• Title/Summary/Keyword: 4-derivation

Search Result 543, Processing Time 0.025 seconds

An analytical expression for the dynamic active thrust from c-φ soil backfill on retaining walls with wall friction and adhesion

  • Shukla, Sanjay K.;Bathurst, Richard J.
    • Geomechanics and Engineering
    • /
    • v.4 no.3
    • /
    • pp.209-218
    • /
    • 2012
  • This paper presents the derivation of an analytical expression for the dynamic active thrust from c-${\phi}$ (c = cohesion, ${\phi}$ = angle of shearing resistance) soil backfill on rigid retaining walls with wall friction and adhesion. The derivation uses the pseudo-static approach considering tension cracks in the backfill, a uniform surcharge on the backfill, and horizontal and vertical seismic loadings. The development of an explicit analytical expression for the critical inclination of the failure plane within the soil backfill is described. It is shown that the analytical expression gives the same results for simpler special cases previously reported in the literature.

Historical Background for Derivation of the Differential Equation mẍ+kx = f(t) (미분방정식 mẍ + kx = f(t)의 역사적 유도배경)

  • Park, Bo-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.315-324
    • /
    • 2011
  • This paper presents a historical study on the derivation of the differential equation of motion for the single-degree-of-freedom m-k system with the harmonic excitation. It was Euler for the first time in the history of vibration theory who tackled the equation of motion for that system analytically, then gave the solution of the free vibration and described the resonance phenomena of the forced vibration in his famous paper E126 of 1739. As a result of the chronological progress in mechanics like pendulum condition from Galileo to Euler, the author asserts two conjectures that Euler could apply to obtain the equation of motion at that time.

A study on derivation of root's formulas of cubic and quartic equation by method analogy (방법유추를 통한 3차와 4차 방정식의 근의 공식 유도)

  • Lyou, Ik-Seung;Shin, Hyun-Yong;Han, In-Ki
    • Communications of Mathematical Education
    • /
    • v.22 no.4
    • /
    • pp.505-514
    • /
    • 2008
  • In this paper we study on derivation of formulas for roots of quadratic equation, cubic equation, and quartic equation through method analogy. Our argument is based on the norm form of polynomial. We also present some mathematical content knowledge related with main discussion of this article.

  • PDF

Dynamic analysis of a cable-stayed bridge using continuous formulation of 1-D linear member

  • Yu, Chih-Peng;Cheng, Chia-Chi
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.271-295
    • /
    • 2012
  • This paper presents the solution scheme of using the continuous formulation of 1-D linear member for the dynamic analysis of structures consisting of axially loaded members. The context describes specific applications of such scheme to the verification of experimental data obtained from field test of bridges carried out by a microwave interferometer system and velocimeters. Attention is focused on analysis outlines that may be applicable to in-situ assessment for cable-stayed bridges. The derivation of the dynamic stiffness matrix of a prismatic member with distributed properties is briefly reviewed. A back calculation formula using frequencies of two arbitrary modes of vibration is next proposed to compute the tension force in cables. Derivation of the proposed formula is based on the formulation of an axially loaded flexural member. The applications of the formulation and the proposed formula are illustrated with a series of realistic examples.

Prediction of Roll Force Profile in Cold Rolling - Part I : Development of a Mathematical Model (냉간 압연에서 압하력 분포 예측 - Part I : 수식 모델 개발)

  • Nam, S.Y.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.190-196
    • /
    • 2019
  • The capability of accurately predicting the roll force profile across a strip in the bite zone in cold rolling process is vital for the calculation of strip profile. This paper presents a derivation of a precision mathematical model for predicting variations in the roll force across a strip in cold rolling. While the derivation is based on an approximate 3-D theory of rolling, this mathematical model also considers plastic deformation in the pre-deformation region which is located close to the roll entrance before the strip enters the bite zone. Finally, the mathematical model is expressed as a boundary value problem, and it predicts the roll force profile and tension profile in addition to lateral plastic strain profile.

A NOTE ON GENERALIZED SKEW DERIVATIONS ON MULTILINEAR POLYNOMIALS

  • RAZA, MOHD ARIF;REHMAN, NADEEM UR;GOTMARE, A.R.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.1_2
    • /
    • pp.73-81
    • /
    • 2021
  • Let R be a prime ring, Qr be the right Martindale quotient ring and C be the extended centroid of R. If �� be a nonzero generalized skew derivation of R and f(x1, x2, ⋯, xn) be a multilinear polynomial over C such that (��(f(x1, x2, ⋯, xn)) - f(x1, x2, ⋯, xn)) ∈ C for all x1, x2, ⋯, xn ∈ R, then either f(x1, x2, ⋯, xn) is central valued on R or R satisfies the standard identity s4(x1, x2, x3, x4).

JORDAN HIGHER LEFT DERIVATIONS AND COMMUTATIVITY IN PRIME RINGS

  • Park, Kyoo-Hong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.741-748
    • /
    • 2010
  • Let R be a 2-torsionfree prime ring. Our goal in this note is to show that the existence of a nonzero Jordan higher left derivation on R implies R is commutative. This result is used to prove a noncommutative extension of the classical Singer-Wermer theorem in the sense of higher derivations.