• Title/Summary/Keyword: 4-derivation

Search Result 543, Processing Time 0.024 seconds

Almost derivations on the banach algebra $C^n$[0,1]

  • Jun, Kil-Woung;Park, Dal-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.359-366
    • /
    • 1996
  • A linear map T from a Banach algebra A into a Banach algebra B is almost multiplicative if $\left\$\mid$ T(fg) - T(f)T(g) \right\$\mid$ \leq \in\left\$\mid$ f \right\$\mid$\left\$\mid$ g \right\$\mid$(f,g \in A)$ for some small positive $\in$. B.E.Johnson [4,5] studied whether this implies that T is near a multiplicative map in the norm of operators from A into B. K. Jarosz [2,3] raised the conjecture : If T is an almost multiplicative functional on uniform algebra A, there is a linear and multiplicative functional F on A such that $\left\$\mid$ T - F \right\$\mid$ \leq \in', where \in' \to 0$ as $\in \to 0$. B. E. Johnson [4] gave an example of non-uniform commutative Banach algebra which does not have the property described in the above conjecture. He proved also that C(K) algebras and the disc algebra A(D) have this property [5]. We extend this property to a derivation on a Banach algebra.

  • PDF

Characterizations of Lie Triple Higher Derivations of Triangular Algebras by Local Actions

  • Ashraf, Mohammad;Akhtar, Mohd Shuaib;Jabeen, Aisha
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.683-710
    • /
    • 2020
  • Let ℕ be the set of nonnegative integers and 𝕬 be a 2-torsion free triangular algebra over a commutative ring ℛ. In the present paper, under some lenient assumptions on 𝕬, it is proved that if Δ = {𝛿n}n∈ℕ is a sequence of ℛ-linear mappings 𝛿n : 𝕬 → 𝕬 satisfying ${\delta}_n([[x,\;y],\;z])\;=\;\displaystyle\sum_{i+j+k=n}\;[[{\delta}_i(x),\;{\delta}_j(y)],\;{\delta}_k(z)]$ for all x, y, z ∈ 𝕬 with xy = 0 (resp. xy = p, where p is a nontrivial idempotent of 𝕬), then for each n ∈ ℕ, 𝛿n = dn + 𝜏n; where dn : 𝕬 → 𝕬 is ℛ-linear mapping satisfying $d_n(xy)\;=\;\displaystyle\sum_{i+j=n}\;d_i(x)d_j(y)$ for all x, y ∈ 𝕬, i.e. 𝒟 = {dn}n∈ℕ is a higher derivation on 𝕬 and 𝜏n : 𝕬 → Z(𝕬) (where Z(𝕬) is the center of 𝕬) is an ℛ-linear map vanishing at every second commutator [[x, y], z] with xy = 0 (resp. xy = p).

Derivation of Faddeev-Type Equation from Weinberg's Equation (Weinberg 방정식으로 부터 Faddeev 형 방정식의 유도)

  • Eu, Byung Chan
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.349-353
    • /
    • 1972
  • The Faddeev-type equations for systems of more than four particles are derived from Weinberg's equation. The derivation is considerably simpler than that by others. The Faddeev-type equations thus derived can be expressed in a matrix form and the rules for constructing the inhomogeneous term and the matrix kernel of the matrix integral equation are formulated and verified explicitly for N=3, 4, and 5.

  • PDF

NONLINEAR ξ-LIE-⁎-DERIVATIONS ON VON NEUMANN ALGEBRAS

  • Yang, Aili
    • Korean Journal of Mathematics
    • /
    • v.27 no.4
    • /
    • pp.969-976
    • /
    • 2019
  • Let ℬ(ℋ) be the algebra of all bounded linear operators on a complex Hilbert space ℋ and 𝒨 ⊆ ℬ(ℋ) be a von Neumann algebra without central abelian projections. Let ξ be a non-zero scalar. In this paper, it is proved that a mapping φ : 𝒨 → ℬ(ℋ) satisfies φ([A, B]ξ)= [φ(A), B]ξ+[A, φ(B)]ξ for all A, B ∈ 𝒨 if and only if φ is an additive ⁎-derivation and φ(ξA) = ξφ(A) for all A ∈ 𝒨.

CONTINUITY OF (α,β)-DERIVATIO OF OPERATOR ALGEBRAS

  • Hou, Chengjun;Meng, Qing
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.823-835
    • /
    • 2011
  • We investigate the continuity of (${\alpha},{\beta}$)-derivations on B(X) or $C^*$-algebras. We give some sufficient conditions on which (${\alpha},{\beta}$)-derivations on B(X) are continuous and show that each (${\alpha},{\beta}$)-derivation from a unital $C^*$-algebra into its a Banach module is continuous when and ${\alpha}$ ${\beta}$ are continuous at zero. As an application, we also study the ultraweak continuity of (${\alpha},{\beta}$)-derivations on von Neumann algebras.

NONADDITIVE STRONG COMMUTATIVITY PRESERVING DERIVATIONS AND ENDOMORPHISMS

  • Zhang, Wei;Xu, Xiaowei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1127-1133
    • /
    • 2014
  • Let S be a nonempty subset of a ring R. A map $f:R{\rightarrow}R$ is called strong commutativity preserving on S if [f(x), f(y)] = [x, y] for all $x,y{\in}S$, where the symbol [x, y] denotes xy - yx. Bell and Daif proved that if a derivation D of a semiprime ring R is strong commutativity preserving on a nonzero right ideal ${\rho}$ of R, then ${\rho}{\subseteq}Z$, the center of R. Also they proved that if an endomorphism T of a semiprime ring R is strong commutativity preserving on a nonzero two-sided ideal I of R and not identity on the ideal $I{\cup}T^{-1}(I)$, then R contains a nonzero central ideal. This short note shows that the conclusions of Bell and Daif are also true without the additivity of the derivation D and the endomorphism T.

ON DERIVATIONS IN BANACH ALGEBRAS

  • Chang, Ick-Song;Jun, Kil-Woung;Jung, Yong-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.635-643
    • /
    • 2002
  • Our main goal is to show that if there exist Jordan derivations D and G on a noncommutative (n + 1)!-torsion free prime ring R such that $$D(x)x^n-x^nG(x)\in\ C(R)$$ for all $x\in\ R$, then we have D=0 and G=0. We also prove that if there exists a derivation D on a noncommutative 2-torsion free prime ring R such that the mapping $\chi$longrightarrow[aD($\chi$), $\chi$] is commuting on R, then we have either a = 0 or D = 0.

DERIVATIONS WITH NILPOTENT VALUES ON Γ-RINGS

  • Dey, Kalyan Kumar;Paul, Akhil Chandra;Davvaz, Bijan
    • The Pure and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.237-246
    • /
    • 2014
  • Let M be a prime ${\Gamma}$-ring and let d be a derivation of M. If there exists a fixed integer n such that $(d(x){\alpha})^nd(x)=0$ for all $x{\in}M$ and ${\alpha}{\in}{\Gamma}$, then we prove that d(x) = 0 for all $x{\in}M$. This result can be extended to semiprime ${\Gamma}$-rings.