• Title/Summary/Keyword: 4-derivation

Search Result 543, Processing Time 0.023 seconds

CHARACTERIZATIONS OF JORDAN DERIVABLE MAPPINGS AT THE UNIT ELEMENT

  • Li, Jiankui;Li, Shan;Luo, Kaijia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.277-283
    • /
    • 2022
  • Let 𝒜 be a unital Banach algebra, 𝓜 a unital 𝒜-bimodule, and 𝛿 a linear mapping from 𝒜 into 𝓜. We prove that if 𝛿 satisfies 𝛿(A)A-1+A-1𝛿(A)+A𝛿(A-1)+𝛿(A-1)A = 0 for every invertible element A in 𝒜, then 𝛿 is a Jordan derivation. Moreover, we show that 𝛿 is a Jordan derivable mapping at the unit element if and only if 𝛿 is a Jordan derivation. As an application, we answer the question posed in [4, Problem 2.6].

DERIVATIONS ON CONVOLUTION ALGEBRAS

  • MEHDIPOUR, MOHAMMAD JAVAD;SAEEDI, ZAHRA
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1123-1132
    • /
    • 2015
  • In this paper, we investigate derivations on the noncommutative Banach algebra $L^{\infty}_0({\omega})^*$ equipped with an Arens product. As a main result, we prove the Singer-Wermer conjecture for the noncommutative Banach algebra $L^{\infty}_0({\omega})^*$. We then show that a derivation on $L^{\infty}_0({\omega})^*$ is continuous if and only if its restriction to rad($L^{\infty}_0({\omega})^*$) is continuous. We also prove that there is no nonzero centralizing derivation on $L^{\infty}_0({\omega})^*$. Finally, we prove that the space of all inner derivations of $L^{\infty}_0({\omega})^*$ is continuously homomorphic to the space $L^{\infty}_0({\omega})^*/L^1({\omega})$.

Provable Security of Key Derivation Functions Based on the Block Ciphers (블록암호 기반 키유도함수의 증명가능 안전성)

  • Kang, Ju-Sung;Yi, Ok-Yeon;Youm, Ji-Sun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.4
    • /
    • pp.3-16
    • /
    • 2010
  • Key derivation functions are used within many cryptographic systems in order to generate various keys from a fixed short key string. In this paper we survey a state-of-the-art in the key derivation functions and wish to examine the soundness of the functions on the view point of provable security. Especially we focus on the key derivation functions using pseudorandom functions which are recommended by NISI recently, and show that the variant of Double-Pipeline Iteration mode using pseudorandom permutations is a pseudorandom function. Block ciphers can be regarded as practical primitives of pseudorandom permutations.

A NOTE ON SKEW DERIVATIONS IN PRIME RINGS

  • De Filippis, Vincenzo;Fosner, Ajda
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.885-898
    • /
    • 2012
  • Let m, n, r be nonzero fixed positive integers, R a 2-torsion free prime ring, Q its right Martindale quotient ring, and L a non-central Lie ideal of R. Let D : $R{\rightarrow}R$ be a skew derivation of R and $E(x)=D(x^{m+n+r})-D(x^m)x^{n+r}-x^mD(x^n)x^r-x^{m+n}D(x^r)$. We prove that if $E(x)=0$ for all $x{\in}L$, then D is a usual derivation of R or R satisfies $s_4(x_1,{\ldots},x_4)$, the standard identity of degree 4.

NOTES ON GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS

  • Dhara, Basudeb;Filippis, Vincenzo De
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.599-605
    • /
    • 2009
  • Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that $u^sH(u)u^t$ = 0 for all u $\in$ L, where s $\geq$ 0, t $\geq$ 0 are fixed integers. Then H(x) = 0 for all x $\in$ R unless char R = 2 and R satisfies $S_4$, the standard identity in four variables.

HIGHER LEFT DERIVATIONS ON SEMIPRIME RINGS

  • Park, Kyoo-Hong
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.355-362
    • /
    • 2010
  • In this note, we extend the Bresar and Vukman's result [1, Proposition 1.6], which is well-known, to higher left derivations as follows: let R be a ring. (i) Under a certain condition, the existence of a nonzero higher left derivation implies that R is commutative. (ii) if R is semiprime, every higher left derivation on R is a higher derivation which maps R into its center.

Key Derivation Functions Using the Dual Key Agreement Based on QKD and RSA Cryptosystem (양자키분배와 RSA 암호를 활용한 이중키 설정 키유도함수)

  • Park, Hojoong;Bae, Minyoung;Kang, Ju-Sung;Yeom, Yongjin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.479-488
    • /
    • 2016
  • For a secure communication system, it is necessary to use secure cryptographic algorithms and keys. Modern cryptographic system generates high entropy encryption key through standard key derivation functions. Using recent progress in quantum key distribution(QKD) based on quantum physics, it is expected that we can enhance the security of modern cryptosystem. In this respect, the study on the dual key agreement is required, which combines quantum and modern cryptography. In this paper, we propose two key derivation functions using dual key agreement based on QKD and RSA cryptographic system. Furthermore, we demonstrate several simulations that estimate entropy of derived key so as to support the design rationale of our key derivation functions.