• Title/Summary/Keyword: 4-cumylphenol

Search Result 2, Processing Time 0.016 seconds

Bisphenol A and the related alkylphenol contaminants in crustaceans and their potential bioeffects

  • Zuo, Yuegang;Zhu, Zhuo;Alshanqiti, Mohammed;Michael, Joseph;Deng, Yiwei
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.39-48
    • /
    • 2015
  • Bisphenol A is widely used in plastic and other industrial consumer products. Release of bisphenol A and its analogues into the aquatic environment during manufacture, use and disposal has been a great scientific and public concern due to their toxicity and endocrine disrupting effects on aquatic wildlife and even human beings. More recent studies have shown that these alkylphenols may affect the molting processes and survival of crustacean species such as American lobster, crab and shrimp. In this study, we have developed gas chromatography with flame ionization detection (GC-FID) and gas chromatography-mass spectrometric (GC-MS) methods for the determination of bisphenol A and its analogues in shrimp Macrobrachium rosenbergii, blue crab Callinectes sapidus and American lobster Homarus americanus samples. Bisphenol A, 2,4-bis-(dimethylbenzyl)phenol and 4-cumylphenol were found in shrimp in the concentration ranges of 0.67-5.51, 0.36-1.61, and < LOD (the limit of detection)-1.96 ng/g (wet weight), and in crab of 0.10-0.44, 0.13-0.62, and 0.26-0.58 ng/g (wet weight), respectively. In lobster tissue samples, bisphenol A, 2-t-butyl-4-(dimethylbenzyl)phenol, 2,6-bis-(t-butyl)-4-(dimethylbenzyl)phenol, 2,4-bis-(dimethybenzyl)phenol, 2,4-bis-(dimethylbenzyl)-6-t-butylphenol and 4-cumylphenol were determined at the concentration ranges of 4.48-7.01, 1.23-2.63, 2.71-9.10, 0.35-0.91, 0.64-3.25, and 0.44-1.00 ng/g (wet weight), respectively. At these concentration levels, BPA and its analogs may interfere the reproduction and development of crustaceans, such as larval survival, molting, metamorphosis and shell hardening.

Ultrahigh Molecular Weight Polyethylene Hybrid Films with Functionalized-MWNT: Thermomechanical Properties, Morphology, Gas Permeability, and Optical Transparency (기능화된 탄소나노튜브를 이용한 초고분자량 폴리에틸렌 복합체 필름: 열적 기계적 성질, 모폴로지, 전기적 성질 및 기체 투과도)

  • Ko, Jeong-Ho;Kim, Jeong-Cheol;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.97-103
    • /
    • 2009
  • Ultra-high molecular weight polyethylene (UHMWPE)/functionalized-MWNT hybrid films were prepared by the solution intercalation method, using 4-cumylphenol-MWNT (CP-MWNT) as the functionalized-MWNT. The variation of the thermomechanical properties, morphology, gas permeability, and optical transparency of the hybrid films with CP-MWNT content in the range of 0$\sim$2.00 wt% were examined. The newly synthesized UHMWPE/functionalized-MWNT hybrid films were characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and a universal tensile machine (UTM). It was found that the addition of only a small amount of functionalized-MWNT was sufficient to improve the thermomechanical properties of the UHMWPE hybrid films, with maximum enhancement being observed in the CP-MWNT loading in the range 0.50 to 1.00 wt%. The maximum enhancement in the oxygen gas barrier was also found at the functionalized MWNT content of 1.00 wt%. In this work, the thermomechanical properties and gas permeability of the hybrid films were found to be better than those of pure UHMWPE.