• Title/Summary/Keyword: 4-ball wear test

Search Result 62, Processing Time 0.027 seconds

Friction Transition Diagram Considering the Effects of Oxide Layer Formed on Contact Parts of TiN Coated Ball and Steel Disk in Sliding (미끄럼운동시 TiN코팅볼과 스틸디스크의 미끄럼접촉면에 형성되는 산화막의 영향을 고려한 마찰천이선도 작성에 대한 연구)

  • Cho, Chung-Woo;Park, Dong-Shin;Lee, Young-Ze
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.335-342
    • /
    • 2003
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk in sliding are investigated. Also wear mechanism to from the oxide layer and the characteristics of the oxide layer formation are investigated. AISI 52100 steel ball is used for the substrate of coated ball specimens. Two types of coated ball specimens were prepared by depositing TiN coating with 1 and 4 ${\mu}{\textrm}{m}$ in coating thickness. AISI 1045 steel is used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of the two materials, the tests were performed both in air for forming oxide layer on the contact parts and in nitrogen environment to avoid oxidation. And to study the effects of surface roughness of counter-body, TiN coating thickness and contact load of sliding test on the characteristics of oxide layer formation on counter-body, various tests were carried out. From the results, the friction characteristics between the two materials was predominated by iron oxide layer that formed on wear track on counter-body and this layer caused the high friction. And the formation rate of the oxide layer on wear track increased as the real contact area between the two materials increased as the contact load increased, the TiN coating thickness decreased and the surface of counter-body smoothened.

Friction transition diagram considering the effects of oxide layer formed on contact parts of TiN coated ball and steel disk in sliding (TiN코팅된 볼과 스틸디스크의 미끄럼운동 시 접촉면에 형성되는 산화막의 영향을 고려한 마찰천이선도 작성에 대한 연구)

  • 조정우;박동신;임정순;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.109-116
    • /
    • 2001
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk in sliding are investigated. Also wear mechanism to form the oxide layer and the characteristics of the oxide layer formation are investigated. AIS152100 steel ball is used for the substrate of coated ball specimens. Two types of coated ball specimens were prepared by depositing TiN coating with 1 and 4um in coating thickness. AISI1045 steel is used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of the two materials, the tests were performed both in ambient for forming oxide layer on the contact parts and in nitride environment to avoid oxidation. And to study the effects of surface roughness of counter-body, TiN coating thickness and contact load of sliding test on the characteristics of oxide layer formation on counter-body, various tests were carried out. From the results, the friction characteristics between the two materials was predominated by iron oxide layer that formed on wear track on counter-body and this layer caused the high friction. And the formation rate of the oxide layer on wear track increased as the real contact area between the two materials increased as the contact load increased, the TiN coating thickness decreased and the surface of counter-body smoothened.

  • PDF

The Study on Field Test of the New Formulated and Commercial Diesel Engine Oils (제조 디젤엔진 오일과 상업용 디젤엔진 오일의 실차시험 연구)

  • 김영운;정근우;강석춘
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.51-59
    • /
    • 2001
  • A diesel engine oil formulated in KRICT and a commercial diesel engine oil (API CG-4) were tested by car and their Kinematic Viscosity, TAN, TBN, metal content, additive depletion, anti-wear property and IR analysis were analyzed. From the research, both of the tested oils had almost the same properties f3r the change of TAN and TBN, but the change of Kinematic Viscosity of formulated oil was slightly higher than that of commercial oil. The iron content in the commercial oil increased rapidly from 7000 km while that of the formulated oil was still low. These results were confirmed by the anti-wear test with a 4-ball wear test machine for the each samples. Also, for the commercial oil, the depletion factor of the Zn-DTP which was added as an anti-wear property did not change any more after 7000 km. But, that of the formulated oil changed continuously to 8000 km, which means that the ability to prevent wear of the sliding pairs exists for the formulated oil. From the analysis results of oil properties obtained by field test, it was found that the commercial oil could be used only within 7000 km, but the formulated oil could be used more than 8000 km without severe wear of the sliding parts in the diesel engine.

  • PDF

The Assessment of Ceramic Wear by the Parameter Scf (Scf 파라메타에 의한 세라믹 마멸 평가)

  • 김상우;김석삼
    • Tribology and Lubricants
    • /
    • v.12 no.1
    • /
    • pp.56-65
    • /
    • 1996
  • The result of wear test for ceramic materials was assessed by Scf parameter to verify the usefulness of the proposed Scf parameter. Friction and wear tests were carried out with ball on disk type. The materials used in this study were HIPed Alumina $(Al_2O_3)$, Silicon carbide (sic), Silicon nitride $(Si_3N_4)$ and Zirconia $(ZrO_2)$. The tests were carried out at room temperature with self mated couples of ceramic materials under lubricated condition. Turbine oil was used as a lubricant. In this test, increasing the load, specific wear rates and wear coefficients of four kinds of ceramic materials had a tendency to increase. The wear coefficients of ceramic materials were in order of $Al_2O_3, SiC, Si_3N_4, ZrO_2$. Worn surfaces investigated by SEM had residual surface cracks and wear particles caused by brittle fracture. As the fracture toughness of ceramic materials was higher, wear resistance more increased. The roughness of worn surface had correlation with wear rate. The wear rate(W$_{s}$) and Scf parameter showed linear relationship in log-log coordinates and the wear equation was given as $W_s = 5.52 $\times$ Scf^{5.01}$.

A Study on Synthesis and Wear Characteristics of Mo-DTP as Lubricant Additive (윤활유 첨가제로써 Mo-DTP의 합성과 마찰마모특성에 관한 연구)

  • 김종호;강석춘;정근우;조원오;한두희
    • Tribology and Lubricants
    • /
    • v.5 no.1
    • /
    • pp.57-63
    • /
    • 1989
  • The soluble Mo-DTP compounds as lubricant additives for reducing friction and wear, increasing loadcarrying capacity, and as antioxidants is very important as a new additive developed in these day. The method of the compounds are described and the composition is analyzed with $^{31}$P NMR spectrometer. The wear test is conducted with 4-ball machine and the debris are analyzed by ferrography. Also the tribological performance of Mo-DTP compounds are compared with Moly Van L and Zn-DTP.

Adhesive Behaviors of the Aluminum Alloy-Based CrN and TiN Coating Films for Ocean Plant

  • Murakami, Ri-Ichi;Yahya, Syed Qamma Bin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.106-115
    • /
    • 2012
  • In the present study, TiN and CrN films were coated by arc ion plating equipment onto aluminum alloy substrate, A2024. The film thickness was about 4.65 ${\mu}m$. TiN and CrN films were analyzed by X-ray diffraction and energy dispersive X-ray equipments. The Young's modulus and the micro-Vickers hardness of aluminum substrate were modified by the ceramic film coatings. The difference in Young's modulus between substrate and coating film would affect on the wear resistance. The critical load, Lc, was 75.8 N for TiN and 85.5 N for CrN. It indicated from the observation of optical micrographs for TiN and CrN films that lots of cracks widely propagated toward the both sides of scratch track in the early stage of MODE I. TiN film began to delaminate completely at MODE II stage. The substrate was finally glittered at MODE III stage. For CrN film, a few crack can be observed at MODE I stage. The delamination of film was not still occurred at MODE II and then was happened at MODE III. This agrees with critical load measurement which the adhesive strength was greater for CrN film than for TiN film. Consequently, it was difficult for CrN to delaminate because the adhesive strength was excellent against Al substrate. The wear process, which the film adheres and the ball transfers, could be enhanced because of the increase in loading. The wear weight of ball was less for CrN than for TiN. This means that the wear damage of ball was greater for TiN than for CrN film. It is also obvious that it was difficult to delaminate because the CrN coating film has high toughness. The coefficient of friction was less for CrN coating film than for TiN film.

Synthese and Anti-wear Properties of Diol Derivatives Containing Dithiophosphate Group-effect on Main Alkyl Chain and Side Alkyl Chain (Dithiophosphate Group을 함유한 디올유도체의 합성 및 내마모성-말단 알킬기 및 몸체 알킬기의 탄소사슬에 따른 영향)

  • Ko, Kyung-Min;Han, Hye-Rim;Kim, Young-Wun;Kang, Ho-Cheol;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.405-412
    • /
    • 2018
  • Three types of bis[3-(dialkyloxylphosphorothionyl) thio-2-methylpropanyloxy]alkane (BAPA) drived from alkane diol were synthesized. The principal chain of each BAPA had a different carbon number, i.e., 6, 9, and 11. The three types of synthesized BAPA were compared to zinc dialkyl dithiophosphates (ZDDPs) in terms of abrasion resistance. A four-ball test was conducted to evaluate the anti-abrasion performance of the synthesized BAPA according to the length of the principal carbon chain. Each product was added to an additive at a concentration of 1% of the base oil weight, and the wear scar diameter (WSD) was measured as 0.472, 0.459, and 0.480 mm, respectively. Among the BAPA compounds, dialkyl dithiophosphoric acid (DDP), which is the side chain of bis[methacryloyloxy] nonane (BMOO9), was synthesized by varying the carbon number, i.e., 4, 8, and 12, and subsequently the 4-ball test was carried out. The WSD was determined as 0.537, 0.459, and 0.531 mm, respectively. As a result, it was found that when a side chain is short, a thin film is formed. In contrast, a long side chain hindered the formation of a film, and hence the best result was achieved when the carbon number was 8. As for the ZDDPs, the WSD was determined to be 0.563 mm, when measured under the same conditions. The measurements confirm that the synthesized BAPA compounds are superior to the ZDDPs as abrasion resistance additives.

Anti-wear performance and life evaluation of wheel bearing type greases

  • Kim Jung-Young;Chung Keun-Wo;Kim Young-Wun;Jo Won-Oh
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.111-116
    • /
    • 2004
  • Li-complex and urea type greases (each 10 species) which were furnished by Chang-Am LS, analyzed anti-wear performance into fretting wear tester & four-bail wear tester. from the results of fretting wear test, the wear volume of Li-complex greases are $4.6\~8.9mg\;and\;8.3\~14.4mg$ with the test of urea greases. The anti-wear performance for 4-ball wear test of greases produced results around 0.5mm at the value of WSD. The grease life performance were evaluated by SKF-ROF Grease Tester and wheel bearing life tester. From the results of SKF-ROF tester, the life performance evaluated by whole working time produced results $50\~300hr$ with the Li-complex greases and 100-1000hr with the urea greases. That is to say, in spite of severe condition at the higher of $10^{\circ}C$ reaction temp, the life performance with Urea type greases are much superior to Li-complex type greases. Prior to wheel bearing life tester, the grease selected performance evaluation(=anti-wear test) are tested by wheel bearing tester. In this results, we can confirm results those are similar with SKF-ROF tester. In this study, we can draw two major conclusions, one is that Li-complex greases are superior to urea greases with anti-wear properties and the other is that urea greases are much superior to Li-complex greases with life performance.

  • PDF

Study on Sliding Wear Characteristics and Processing of MoSi

  • Park, Sungho;Park, Wonjo;Huh, Sunchul
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.244-249
    • /
    • 2012
  • In this study, a monolithic MoSi2 matrix reinforced with 20 vol% SiC particles, a SiC/MoSi2 composite matrix reinforced with 20 vol% ZrO2 particles, and a ZrO2/MoSi2 composite were fabricated using hot press sintering at $1350^{\circ}C$ for 1 h under a pressure of 30 MPa. The Vickers hardness and sliding wear resistance of the monolithic MoSi2, ZrO2/MoSi2, and SiC/MoSi2 composite were investigated at room temperature. A wear behavior test was carried out using a disk-type wear tester with a silicon nitride ball. The ZrO2/MoSi2 composite showed an average Vickers hardness value and excellent wear resistance compared with the monolithic MoSi2 and SiC/MoSi2 composite at room temperature.

Tribological Behavior of Multilayered WC-Ti1-xAlxN Coatings Deposited by Cathodic Arc Deposition Process on High Speed Steel

  • Kim, Jung Gu;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.52-61
    • /
    • 2006
  • Recently, much of the current development in surface modification engineering are focused on multilayered coatings. Multilayered coatings have the potential to improve the tribological properties. Four different multilayered coatings were deposited on AISI D2 steel. The prepared samples are designed as $WC-Ti_{0.6}Al_{0.4}N$, $WC-Ti_{0.53}Al_{0.47}N$, $WC-Ti_{0.5}Al_{0.5}N$ and $WC-Ti_{0.43}Al_{0.57}N$. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behavior. Especially, wear tests of four multilayered coatings were performed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec, 5.38 N load. The tests were carried out at room temperature in air by employing AISI 52100 steel ball ($H_R=66$) having a diameter of 10 mm. The surface morphology, and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Results have showed an improved wear resistance of the $WC-Ti_{1-x}Al_xN$ coatings with increasing of Al concentration. $WC-Ti_{0.43}Al_{0.57}N$ coating with the lower surface roughness and porosity with good adhesion enhanced wear resistance.