• 제목/요약/키워드: 4-Point Bending

검색결과 499건 처리시간 0.024초

ORP profile을 이용한 연속 회분식 반응기(Sequencing Batch Reactor)에서 무산소공정 추론 (Inference of Sequencing Batch Reactor Process using Oxidation Reduction Potential)

  • 심문용;부경민;임정훈;우혜진;김창원
    • 한국환경과학회지
    • /
    • 제13권3호
    • /
    • pp.245-250
    • /
    • 2004
  • The SBR(Sequencing Batch Reactor) process is ideally suited to treat high loading wastewater due to its high dilution rate. SBR operates by a cycle of periods consisting of filling, reacting, settling, decanting and idling. The react phases such as aeration or non-aeration, organic oxidation, nitrification, denitrification and other bio-logical reactions can be achieved in a reactor. Although the whole reactions can be achieved in a SBR with time distributing, it is hard to manage the SBR as a normal condition without recognizing a present state. The present state can be observed with nutrient sensors such as ${NH_{4}}^{+}-N$, ${NO_{2}}^{-}-N$, ${NO_{3}}^{-}-N} and ${PO_{4}}^{ 3-}-P.$ However, there is still a disadvantage to use the nutrient sensors because of their high expense and inconvenience to manage. Therefore, it is very useful to use common on-line sensors such as DO, ORP and pH, which are less expensive and more convient. Moreover, the present states and unexpected changes of SBR might be predicted by using of them. This study was conducted to get basic materials for making an inference of SBR process from ORP(oxidation reduction potential) of synthetic wastewater. The profiles of ORP, DO, and pH were under normal nitrification and denitrification were obtained to compare abnormal condition. And also, nitrite and nitrate accumulation were investigated during reaction of SBR. The bending point on ORP profile was not entirely in the low COD/NOx ratio condition. In this case, NOx was not entirely removed, and minimum ORP value was presented over -300mV. Under suitable COD/NOx ratio which complete denitrification was achieved, ORP bending point was observed and minimum ORP value was under -300m V. Under high COD/NOx ratio, ORP bending point was not detected at the first subcycle because of the fast denitrification and minimum ORP value was under -300mV at the time.

$Si_3N_4/SM45C$ 접합부의 응력해석 및 파괴특성 (Fracture Characteristics and Stress Analysis of $Si_3N_4/SM45C$ Joint)

  • 김기성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.248-253
    • /
    • 1998
  • Recently, the uses of Ceramic/metal bonded joints, resin/metal joints, adhesive joints, composite materials which are composed of dissimiliar materials have increased in various industry fields. Since the ceramic/metal bonded joints material is made at a high temperature, residual stress distributions due to differences in material properties were investigated by varying material parameters. The two dimensional finite element analysis was performed to study residual stress distribution in Si3N4/SM45C bonded joint with a copper interlayer between the silicon nitride(Si3N4) and the structural carbon steel(SM45C) and 4-point bending tests were carried out under room temperature. Fracture surface and crack propagation path were observed using scanning electron microscope and characteristics of its fracture was discussed.

  • PDF

시효 발생한 저탄소 냉연강판의 가공형상 불량 방지를 위한 판재 교정기술 활용 (Leveling of Aged Low Carbon Steel Sheets in order to Prevent Shape Defects after Stamping)

  • 박기철
    • 소성∙가공
    • /
    • 제24권4호
    • /
    • pp.241-247
    • /
    • 2015
  • In order to prevent shape defects such as fluting and stretcher strains during press forming of aged low carbon steel sheets, roller leveling conditions for reducing yield point elongation were studied. Yield point elongations of leveled sheets were determined as a function of leveling, which is defined as the plastic fraction or the ratio of plastically deformed part in sheet thickness section to the whole thickness of the sheet. By adjusting this plastic fraction during leveling to more than 78%, yield point elongation in the leveled sheets was reduced so no fluting occurred during subsequent tangential bending. Stretcher strains can be avoided by leveling the sheet to an 84% plastic fraction condition.

충격하중을 받는 CFRP 적층판의 충격손상과 굽힘 잔류강도 직교 이방성 적층판의 충격손상과 파과메카니즘 (Impact Damge and Residual Bending Strength of CFRP Composite Laminates Subjected to Impact Loading Fracture Mechanism and Impact Damage of Orthotropy Laminated Plates)

  • 심재기;양인영;오택열
    • 대한기계학회논문집
    • /
    • 제17권11호
    • /
    • pp.2752-2761
    • /
    • 1993
  • The purpose of this study is to confirm the decreasing problems of residual bending strength, and the fracture machanism experimentally when CFRP composite laminates are subjected to Foreign Object Damage. Composite laminates used for this experiment are CFRP orthotropy laminated plates, which have two-interfaces [O/sub 6//sup o//90/sub 6//sup o/]sub sym/ and four-interfaces [O/sub 3//sup o//90/sub 6//sup o//O/sub 3//sup o]/sub sym/. When the specimen is subjected to transverse impact by a steel ball, the delamination area generated by impact damage is observed by using SAM(Scanning Acoustic Microscope). also, Thefracture surfaces obtained by three-point bending test were observed by using SEM (Scanning Electron Microscope). Then, fracture mechanism was investigated based on the observed delamination area and fracture surface. The results were summarized as follows; (1) It is found that for the specimen with more interface, the critical delamination energy is increased while delamination-development energy is decreased. (2) Residual bending strength of specimen A is greater than that of Specimen B within the impact range of impact energy 1. 65J (impacted-side compression) and 1. 45J (impacted-side tension). On the other hand, when the impact energy is beyond the above ranges, residual bending strength of specimen A is smaller than that of specimen B. (3) In specimen A and B, residual strength of CFRP plates subjected to impact damage is lower in the impacted-side compression than in the impacted-side tension. (4) In the case of impacted-side compression, fracture is propagated from the transverse crack generat-ed near impact point. On the other hand, fracture is developed toward the impact point from the edge of interface-B delamination in the case of impacted-side tension.

사점굽힘시험법을 이용한 이종절연막 (Si/SiO2||Si3N4/Si) SOI 기판쌍의 접합강도 연구 (Direct Bonded (Si/SiO2∥Si3N4/Si) SIO Wafer Pairs with Four-point Bending)

  • 이상현;송오성
    • 한국재료학회지
    • /
    • 제12권6호
    • /
    • pp.508-512
    • /
    • 2002
  • $2000{\AA}-SiO_2/Si(100)$ and $560{\AA}-Si_3N_4/Si(100)$ wafers, which are 10 cm in diameter, were directly bonded using a rapid thermal annealing method. We fixed the anneal time of 30 second and varied the anneal temperatures from 600 to $1200^{\circ}C$. The bond strength of bonded wafer pairs at given anneal temperature were evaluated by a razor blade crack opening method and a four-point bonding method, respectively. The results clearly slow that the four-point bending method is more suitable for evaluating the small bond strength of 80~430 mJ/$\m^2$ compared to the razor blade crack opening method, which shows no anneal temperature dependence in small bond strength.

표면거칠기에 따른 글래스 웨이퍼와 UV 경화 폴리머사이의 계면접착 에너지 평가 (Effect of surface toughness on the interfacial adhesion energy between glass wafer and UV curable polymer for different surface roughness)

  • 장은정;현승민;최대근;이학주;박영배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.40-44
    • /
    • 2008
  • The interfacial adhesion energy between resist and a substrate is very important due to resist pull-off problems during separation of mold from a substrate in nanoimprint process. And effect of substrate surface roughness on interfacial adhesion energy is very important. In this paper, we have treated glass wafer surface using $CF_4$ gas for increase surface roughness and it has tested interfacial adhesion properties of UV resin/glass substrate interfaces by 4 point bending test. The interfacial adhesion energies by bare, 30, 60 and 90 sec surface treatments are 0.62, 1.4, 1.36 and 2 $J/m^2$, respectively. The test results showed quantitative comparisons of interfacial fracture energy (G) effect of glass wafer surface roughness.

  • PDF

면적비와 거리비가 점용접된 두 사각평판의 굽힘강성에 미치는 영향 (The Effect of the Area Ratio and the Distance Ratio on Bending Stiffness of Two Rectangular Spot-Welded Plates)

  • 한근조;안성찬;심재준;한동섭
    • 대한기계학회논문집A
    • /
    • 제27권3호
    • /
    • pp.387-392
    • /
    • 2003
  • The mechanical behavior of two rectangular spot-welded plates under bending is investigated in detail. The equivalent thickness of spot-welded plates is introduced in this study and used in explaining the results. The focus of the analysis is to evaluate the effect of spot-welding from the view point of equivalent thickness. The investigation of deflection has been performed as comparing the result from finite element analysis with the measured data of the spot-welded plates for various parameters, such as aspect ratio, area ratio, and distance ratio of spot-welding points. The effect of spot-welding is as large as 62%(at r=1.0) when the area ratio of spot-welding point is just 4.52%.

Al5052/CFRP 복합소재의 표면특성이 접착성과 기계적특성에 미치는 영향 (Effect of Surface Roughness of Al5052/CFRP Composites on the Adhesion and Mechanical Properties)

  • 이민식;김현호;강충길
    • Composites Research
    • /
    • 제26권5호
    • /
    • pp.295-302
    • /
    • 2013
  • 본 연구에서는 차량용 Al5052/CFRP 복합재를 U-채널 몰드에서 컴프레션 몰딩 공정을 통해 제작하였다. Al5052는 샌드블라스팅을 통해 표면처리를 하였다. 표면처리를 하지 않은 판재와 표면거칠기(Ra)가 $1.85{\mu}m$ 및, $4.25{\mu}m$인 Al5052판재를 이용하여 실험을 수행하였다. 표면거칠기가 Al5052/CFRP 복합재의 접착성과 기계적 특성에 대한 영향을 전단시험과 굽힘실험을 통하여 평가하였다. 전단 시험에서는 표면거칠기가 $1.85{\mu}m$$4.25{\mu}m$ 시험편이 표면처리를 하지 않은 시험편보다 각각 3, 5배의 전단강도의 증가를 보였다. 굽힘시험에서는 표면처리를 하지 않았을 때 굽힘강도가 200 MPa에서 표면처리 후 400 MPa로 증가함을 알 수 있었다.

Si$_3$N$_4$/S. S316 접합에서 중간재가 접합강도 및 신회도에 미치는 영향 (Effect of Interlayer Materials on Bending Strength and Reliability of Si$_3$N$_4$/S. S316 Joint)

  • 윤호욱;박상환;최성민;임연수;정윤중
    • 한국세라믹학회지
    • /
    • 제35권3호
    • /
    • pp.219-230
    • /
    • 1998
  • Various interlayer materials have been tested for active metal(Cusil ABA) brazing of Si3N4/S. S316 joint. In general multilayer joint had higher strength(80-150 MPa) and better reliability than monolayered one. The joint with Cu(0.2)/Mo(0.3)/Cu(0.2mm) interlayer showed the highest bending strength of abou 490 MPa and the joint with Cu(0.2)/Mo(0.3mm) interlayer the best reliability (14.6 Weibull modulus). The stresses distributed in joint materials during 4-point bending test were estimated by CAE von Mises analysis; the estimated stresses were In good agreement with the measured data. In multilayer joint Cu was though to reduce the residual stresses induced by the difference in thermal expansion coefficient between the ceramic Mo and metal It apperared that a Cu/Mo was optimum interlayer material for Si3N4/S. S316 joint with high bending strength (420 MPa) and reliability. In addition the various shapes and types of compound were examined by EPMA in joining interface.

  • PDF

세라믹/금속접합재의 강도에 미치는 열사이클 영향 (Effect of Thermal Cycle on Strength of Ceramic and Metal Joint)

  • 박영철;오세욱;김광영
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1664-1673
    • /
    • 1994
  • As a fundamental study on effects of thermal-cycles on residual stress of ceramics/metal joints, residual stresses in $Si_3N_4$/SUS304 joint specimens were measured before and single thermal-cycle by X-ray diffraction method and finite element method(FEM). The residual stress was found to increase after single thermal-cycle, which was agreeable with the results of residual stress measurement by X-ray diffraction method and residual stress analysis by finite element method. After the residual stress measurement, 4-point bending tests were performed. The relationship between the bending strength, the thermal-cycle temperature and hold time was examined. The bending strength was found to decrease with the increase of residual stress in linear relation.