• Title/Summary/Keyword: 4-Methyl benzoic acid

Search Result 50, Processing Time 0.026 seconds

Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.25-36
    • /
    • 2022
  • To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3-induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.

Tc-99m Labeling of Dione Bisoxime Compounds (Dione Bisoxime 계통의 화합물에 대한 테크네슘표지 원리에 관한 연구)

  • Jeong, Jae-Min;Cho, Jung-Hyuk;Oh, Seung-Joon;Lee, Myung-Chul;Chung, Soo-Wook;Chung, June-Key;Lee, Dong-Soo;Kwark, Cheol-Eun;Lee, Kyung-Han;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.1
    • /
    • pp.110-117
    • /
    • 1995
  • Tc-99m Labeled hexamethylenepropyleneamineoxime ([$^{99m}Tc$]-HMPAO) is a famous amino-oxime compound and is widely used to construct SPECT images of cerebral blood flow. To investigate the relationship between chemical structure and radiolabeling in these kind of diamine-oxime compounds, we synthesized seven compounds by Schiff's base formation and successive reduction with sodium borohydride. They were (RR/SS )-4,8-diaza-3,6,6,9-tetramethylundecane-2,10-dione bisoxime (2), (RR/SS/meso)-4,8-diaza-3,9-dimethy-lundecane-2,10-dione bisoxime (4), (RR/SS/meso)-4,8-diaza-3,10-dimethyldodecane-2,11-dione bisoxime (5), (RR/SS/meso)-4,7-diaza-3,6,6,8-tetramethyldecane-2,9-dione bisoxime (8), (RR/SS/meso)-4,7-diaza-5,6-cyclohexyl-3,8-dimethyldecane-2,9-dione bisoxime (10), (RR/SS/meso)-3,4-bis(1-aza-2-methyl-3-oxime-1-butyl)-benzoic acid (12), and (RR/SS/ meso)-2,3-bis(1-aza-2-methyl-3-oxime-1-butyl) benzophenone (14). Chemical structures of all the synthesized compounds were identified by taking $^1H$ spectrum. Among them, 2 and 4 are propyleneamine oxime (PnAO), 6 is butyleneamine oxime (BnAO) and 8, 10, 12 and 14 are ethyleneamine oxime (EnAO). Each compound (0.5 mg) was incubated with stannous chloride (0.5 g - 8 g), carbonate-bicarbonate buffer (final concentration = 0.1 M, pH 7 - pH 10) and Tc-99m-pertechenate (1 ml). Tc-99m labeling of these compounds were checked by ITLC (acetone), ITLC (normal saline), reverse phase TLC (50 % acetonitrile) and ITLC (ethyl acetate). According to the results, EnAO's were not labeled by Tc-99m in any of above condition. About 11 % of maximum labeling efficiency was obtained with BnAO. However, 4 (PnAO) was labeled with Tc-99m to 85 % which is similar to the labeling efficiency of 2 (HMPAO). Hydrophilic impurity (9 % ) was the most significant problem with the labeling of 4, however, pertechnetate (3 % ) and colloid (3 %) were minor problem. In conclusion, we synthesized seven diamine blsoxlme compounds. Among them, four EnAO compounds were not labeled by Tc-99m. A BnAO was labeled poorly and two PnAO's were labeled well. These labeling can be explained by tertiary structure of their Tc-99m chelate.

  • PDF

Simultaneous determination of 9 preservatives in processed foods using high-performance liquid chromatography with photo diode array detector (HPLC-PDA를 이용한 가공식품 중 보존료 9종 동시분석)

  • Lee, Do-Yeon;Kim, Min-Hee;Ahn, Jang-Hyuk
    • Analytical Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.233-239
    • /
    • 2020
  • This study was performed to develop an analytical method using Carrez reagents as the precipitant to effectively and easily remove proteins and lipids while pretreating samples for the simultaneous determination of preservatives, including dehydroacetic acid (DHA), sorbic acid (SA), benzoic acid (BA), methyl ρ-hydroxybenzoate (MP), ethyl ρ-hydroxybenzoate (EP), propyl ρ-hydroxybenzoate (PP), isopropyl ρ-hydroxybenzoate (IPP), butyl ρ-hydroxybenzoate (BP), and isobutyl ρ-hydroxybenzoate (IBP). The effective selectivity was determined by HPLC separation analysis for nine preservatives in the test solution, after removing interfering materials such as lipids and proteins. The method developed in this study showed excellent linearity at 0.999 or higher. The limit of detection (LOD) ranged from 0.09 to ~0.12 mg/L and the limit of quantitation (LOQ) was ~0.280.37 mg/L. The results of the recovery test on processed foods, including pickles, cheeses, processed meat products, beverages, sauces, and emulsified foods showed DHA, SA, BA, MP, EP, IPP, PP, IBP, and BP at 90.9~107.7 %, 85.4~113.7 %, 90.7~111.6 %, 84.5~111.2 %, 81.3~110.9 %, 82.5~102.2 %, 81.1~110.0 %, 80.9~109.0 %, and 82.4~110.3 %, respectively. The probability of the simultaneous analytical method developed in this study as a quantitative method was confirmed for various processed foods.

Effects of Reactive Oxygen Species and Nitrogen Species on the Excitability of Spinal Substantia Gelatinosa Neurons

  • Park, Joo Young;Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.141-147
    • /
    • 2016
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are both important signaling molecules involved in pain transmission in the dorsal horn of the spinal cord. Xanthine oxidase (XO) is a well-known enzyme for the generation of superoxide anions ($O_2^{\bullet-}$), while S-nitroso-N-acetyl-DL-penicillamine (SNAP) is a representative nitric oxide (NO) donor. In this study, we used patch clamp recording in spinal slices of rats to investigate the effects of $O_2^{\bullet-}$ and NO on the excitability of substantia gelatinosa (SG) neurons. We also used confocal scanning laser microscopy to measure XO- and SNAP-induced ROS and RNS production in live slices. We observed that the ROS level increased during the perfusion of xanthine and xanthine oxidase (X/XO) compound and SNAP after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), which is an indicator of intracellular ROS and RNS. Application of ROS donors such as X/XO, ${\beta}-nicotinamide$ adenine dinucleotide phosphate (NADPH), and 3-morpholinosydnomimine (SIN-1) induced a membrane depolarization and inward currents. SNAP, an RNS donor, also induced membrane depolarization and inward currents. X/XO-induced inward currents were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger) and manganese(III) tetrakis(4-benzoic acid) porphyrin (MnTBAP; superoxide dismutase mimetics). Nitro-L-arginine methyl ester (NAME; NO scavenger) also slightly decreased X/XO-induced inward currents, suggesting that X/XO-induced responses can be involved in the generation of peroxynitrite ($ONOO^-$). Our data suggest that elevated ROS, especially $O_2^{\bullet-}$, NO and $ONOO^-$, in the spinal cord can increase the excitability of the SG neurons related to pain transmission.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Antioxidant Activities and Inhibitory Effect on Oxidative DNA Damage of Nelumbinis Semen Extracts (연자육 추출물의 항산화 및 산화적 DNA 손상억제 활성)

  • Park, Jae-Ho;Lee, Byung-Gu;Byun, Gwang-In;Kim, Do-Wan
    • The Korea Journal of Herbology
    • /
    • v.25 no.4
    • /
    • pp.55-59
    • /
    • 2010
  • Objective : This study was conducted to investigate the antioxidant activity and inhibitory effect on oxidative DNA damage of Nelumbinis Semen Extracts Methods : Nelumbins semen were extracted with hot-water and ethylacetate (EtOAC). The 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical scavenging assay and $Fe^{2+}$ chelating assay were performed for antioxidative effect and ${\phi}X$-174 RF I DNA cleavage assay and intracellular DNA damage assay were used for inhibitory effect on intracellular DNA damage. Results : In DPPH, Hydroxyl radical scavenging activity and $Fe^{2+}$ chelating activity of EtOAC extracts were 96.22%, 53.53%, 64.72%, while those of hot-water extracts were 20.86%, 10.72%, 29.74% at $200{\mu}g/m{\ell}$, respectively. In ${\phi}X$-174 RF I plasmid DNA cleavage assay, the protective effects of EtOAC and hot-water extracts against oxidative DNA damage were 76% and 6% at $200{\mu}g/m{\ell}$, respectively. Conclusion : These results indicated that the seed extracts of Nelumbo nucifera can be used as a natural antioxidants, which effectively inhibits the oxidative DNA damage.

Survey of Preservatives and UV Filter Ingredients of Distributed Sunblock Products in Korea (국내 유통 자외선 차단 기능성화장품 중 살균보존제 및 자외선차단성분 사용실태조사)

  • Park, Jeong Hee;Kim, Jong Pil;Kim, Jin A;Seo, Kye Won;Kim, Eun Sun;Seo, Jumg Mi
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.381-390
    • /
    • 2017
  • This study was conducted to determine 16 preservatives and 18 UV filter ingredients levels in 100 sunblock products. The order of detection rates of preservatives was phenoxyethanol (n=61), benzoic acid (n=19), methyl paraben (n=11), benzyl alcohol (n=8), propyl paraben (n=7). Also the order of detection rates of UV filter ingredients was titanium dioxide (n=81), ethylhexyl methoxycinnamate (n=69), zinc oxide (n=48), ethylhexyl salicylate (n=48), bis-ethylhexyloxyphenol methoxyphenyltriazine (n=44). The content of the detected preservatives and UV filter ingredients was within maximum allowed amount established by KFDA. In addition, preservatives and UV filter ingredients, which were not labeled in the products, were detected in 31 and 2 products respectively.

Potent Anticarcinogenic Action of Moutan radix for Mouse Ascites Cancer Induced by Mouse Sarcoma 180 Cells (Moutan radix의 mouse sarcoma 180 cell로 유발한 mouse ascites cancer에 대한 항암효과)

  • Bahn, Kyeong-N.;Lee, Eun-J.;Yang, Min-S.;Kim, Jeong-O.;Ha, Yeong-L.
    • Applied Biological Chemistry
    • /
    • v.38 no.4
    • /
    • pp.364-369
    • /
    • 1995
  • Anticarcinogenic activity of Moutan radix for mouse ascites cancer induced by mouse Sarcoma 180 (S-180) cells was investigated. Methanol extract of Moutan radix including other folk medicinal plants (Taxus cuspidata, Curcuma longa, Artemisia capillaris, Ligrstri fructus, and Liriope platyphylla) used to remedy or cure many chronic human diseases like cancer was fractionated into hexane, chloroform ($CHCl_3$), ethylacetate (EtOAc), and butanol (BuOH) fractions. Anticarcinogenic activity of the fractions, exhibited a strong cytotoxicity for L1210 and S-180 cells, was examined for mouse ascites cancer induced by S-180 cells. Male ICR mice (7 mice/treatment, $5{\sim}6$ weeks of age, $23{\pm}1\;g$ were injected i.p. with S-180 cells ($1{\times}10^{7}\;cell/1\;ml$ PBS). One day later, each mouse was given 0.1 ml of 10% DMSO containing sample ($30\;{\mu}g/g$ body weight) every day for 10 consecutive days. Control mice were only given 0.1ml S-180 cells and 0.1 ml 10% DMSO. Mice treated with EtOAc fraction of Moutan radix showed 28.7 days of life, which is 167% of control mice's life. Based on the dose-dependant experiment mice treated with $30\;{\mu}g$ showed longer life relative to mice treated with ootherr doses (5, 15, $60\;{\mu}g$), and mice treated with $60\;{\mu}g$ exhibited toxic symptoms. Body weight of mice treated with Moutan radix was significantly reduced relative to that of control mice (p<0.05). GC-MS analysis in conjunction with silica-gel column chromatography revealed that the EtOAc fraction contained 2-methoxylphenol, benzoic acid, 1-(4-hydroxy-3-methoxyphenyl)ethanone, 8-methyl-2,4(1H,3H)pteridinedione and 2,5-furan-dicarboxylic dimethyl ester as regards to the anticarcinogenic property of the EtOAc fraction. These results suggest that Moutan radix might be included as an anticarcinogenic medicinal plant for treatment of ascites cancer.

  • PDF

A survey on status of quality and risk assessment in dentifrices and mouthwashes (치약제 및 구중청량제의 품질 실태 조사 및 안전성 평가)

  • Jaeeun Kwak;Wonhee Park;Hoejin Ryu;Jin Han;Jeongeun Choe;Sungdan Kim;Insook Hwang;Yongseung Shin
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.300-314
    • /
    • 2023
  • The quality of the products was investigated by analyzing fluorine content, pH, preservatives and tar colors in 31 dentifrice products (6 items for children) and 15 mouthwash products (2 items for children) marketed. It was intended to provide correct information to consumers by checking whether the standards and product indications match. As a result of measuring the fluoride concentration, 26 dentifrice and 15 mouthwash products contained from 48 to 1,472 ppm and from 85 to 225 ppm, respectively. Fluorine detection rates of dentifrice and mouthwash products were 83.9 and 83.3 %, respectively showing similar levels. Of the 41 fluoride-detected dentifrice and mouthwash products, 40 were 90.7~109.8 % of the displayed amount and suitable for the fluorine content standard of 90.0 to 110.0 %, but one dentifrice was found to be inappropriate at 36.3 % of the content indicated on the product. The pH of the dentifrice was 5.1~9.4, and the mouthwash was 4.2~6.2, which met all standards. As a result of simultaneous analysis of the concentration of six preservatives, benzoic acid was detected the most in 15 cases with a 30.6 % detection rate, sorbic acid was detected in 9 cases (detection rate of 18.4 %), and all four types of methyl p-hydroxybenzoate, ethyl p-hydroxybenzoate, propyl p-hydroxybenzoate, butyl p-hydroxybenzoate were not detected. As a result of analyzing the concentration of 10 types of tar colors, six types including red40, yellow4, yellow5, yellow203, green3, and blue1 were detected in a total of 9 cases (2 dentifrices and 7 mouthwashes) with blue1 being the most frequently detected. Detected fluorine concentration, added preservatives and tar colors were consistent with the product markings and it was well written on product packaging. The detected preservatives and tar colors were at a safe level due to low risk compared to Acceptable Daily Intake.

Difference of Absorption and Anatomical Responses to Protoporphyrinogen Oxidase-Inhibiting Herbicides in Wheat and Barley (Protoporphyrinogen Oxidase 저해형 제초제에 대한 밀과 보리의 흡수 및 해부하적 차이)

  • 구자옥;국용인
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.1
    • /
    • pp.68-78
    • /
    • 1997
  • Laboratory and greenhouse studies were conducted to determine differential sensitivities on absorption of $^{14}$ C-oxyfluorfen and the anatomical responses in wheat and barley to protoporphyrinogen oxidase-inhibiting herbicides [oxyfluorfen (2-chloro-1- (3-ethoxy -nitrophen-oxy)-4-(trifluoromethyl) benzene, acifluorfen(5-[2-chloro-4-(trifluoromethyl) phenoxy]-2-nitro-benzoic acid), bifenox(methyl-5-(2, 4-dichlorophenoxy)-2-nitrobenzoate) and oxadiazon(5-tert-butyl-3-(2, 4-dichloro-5-isopropoxyphenyl)-1, 3, 4-oxadiazol-2-one)]. I$_{50}$ value of the tolerant wheat cultivars to oxyfluorfen was about 10$^{-4}$ , whereas that of the susceptible barley cultivars was about 10$^{-6}$ M, showing significant difference between the two groups. When foliage were applied with acifluorfen, bifenox or oxadiazon, the oxyfluorfen-tolerant wheat showed less decreased in shoot fresh weight and chlorophyll content than the susceptible barley. Also, when soil-applied with these herbicides test plants showed similar tendency in foliar application. Electrolyte leakage from the tissue treated with these compounds was the more influenced in the barley than the wheat. Malondialdehyde(MDA) production as index of lipid peroxidation was greater in the barley than the wheat by treatment of these compounds. Therefore, the differential sensitivities of wheat and barley to protoporphyrinogen oxidaseinhibiting herbicides was showed by our greenhouse and in vitro experiment. The absorption rates of $^{14}$ C-oxyfluorfen were higher in the barley than the wheat. And this tendency was showed appararitly difference by increase of treatment durations. After the oxfluorfen and oxadiazon treatment, the tolerant wheat did not show the structural damage in leaf surface, but the susceptible barley was damaged in the leaf waxy layer. However, the acifluorfen and bifenox treatment showed no difference between wheat and barley. The anatomical changes by these compounds treatment were not observed in the tolerant wheat but epidermal cell and mesophyll cell were highly broken in the susceptible barley.

  • PDF