• Title/Summary/Keyword: 4-Camera

Search Result 2,386, Processing Time 0.034 seconds

The GEO-Localization of a Mobile Mapping System (모바일 매핑 시스템의 GEO 로컬라이제이션)

  • Chon, Jae-Choon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.555-563
    • /
    • 2009
  • When a mobile mapping system or a robot is equipped with only a GPS (Global Positioning System) and multiple stereo camera system, a transformation from a local camera coordinate system to GPS coordinate system is required to link camera poses and 3D data by V-SLAM (Vision based Simultaneous Localization And Mapping) to GIS data or remove the accumulation error of those camera poses. In order to satisfy the requirements, this paper proposed a novel method that calculates a camera rotation in the GPS coordinate system using the three pairs of camera positions by GPS and V-SLAM, respectively. The propose method is composed of four simple steps; 1) calculate a quaternion for two plane's normal vectors based on each three camera positions to be parallel, 2) transfer the three camera positions by V-SLAM with the calculated quaternion 3) calculate an additional quaternion for mapping the second or third point among the transferred positions to a camera position by GPS, and 4) determine a final quaternion by multiplying the two quaternions. The final quaternion can directly transfer from a local camera coordinate system to the GPS coordinate system. Additionally, an update of the 3D data of captured objects based on view angles from the object to cameras is proposed. This paper demonstrated the proposed method through a simulation and an experiment.

Infrared Sensitive Camera Based Finger-Friendly Interactive Display System

  • Ghimire, Deepak;Kim, Joon-Cheol;Lee, Kwang-Jae;Lee, Joon-Whoan
    • International Journal of Contents
    • /
    • v.6 no.4
    • /
    • pp.49-56
    • /
    • 2010
  • In this paper we present a system that enables the user to interact with large display system even without touching the screen. With two infrared sensitive cameras mounted on the bottom left and bottom right of the display system pointing upwards, the user fingertip position on the selected region of interest of each camera view is found using vertical intensity profile of the background subtracted image. The position of the finger in two images of left and right camera is mapped to the display screen coordinate by using pre-determined matrices, which are calculated by interpolating samples of user finger position on the images taken by pointing finger over some known coordinate position of the display system. The screen is then manipulated according to the calculated position and depth of the fingertip with respect to the display system. Experimental results demonstrate an efficient, robust and stable human computer interaction.

Study on Algorithm of High-Speed Scanning System for Railway Vehicle Running Units Using High Performance Camera (고성능 카메라를 이용한 철도차량 주행장치용 고속스케닝시스템 알고리즘에 관한 연구)

  • Huh, Sung Bum;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.9-14
    • /
    • 2020
  • It is necessary to apply a non-contact high-speed scanning system that can measure in real time in order to prevent the dropping and deformation of the main parts of railway vehicles during high-speed running. Recently, research on a scanning system that detects the deformation state of main parts from a video image taken using a high-performance camera has been actively pursued. In this study, we researched an analysis algorithm of a high-speed scanning system that uses a high-performance camera to monitor the deformation and drop-out state of the main components of the running units equipment in real time.

A Study on Ceiling Light and Guided Line based Moving Detection Estimation Algorithm using Multi-Camera in Factory

  • Kim, Ki Rhyoung;Lee, Kang Hun;Cho, Su Hyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.70-74
    • /
    • 2018
  • In order to ensure the flow of goods available and more flexible, reduce labor costs, many factories and industrial zones around the world are gradually moving to use automated solutions. One of them is to use Automated guided vehicles (AGV). Currently, there are a line tracing method as an AGV operating method, and a method of estimating the current position of the AGV and matching with a factory map and knowing the moving direction of the AGV. In this paper, we propose ceiling Light and guided line based moving direction estimation algorithm using multi-camera on the AGV in smart factory that can operate stable AGV by compensating the disadvantages of existing AGV operation method. The proposed algorithm is able to estimate its position and direction using a general - purpose camera instead of a sensor. Based on this, it can correct its movement error and estimate its own movement path.

A Vehicle Recognition Method based on Radar and Camera Fusion in an Autonomous Driving Environment

  • Park, Mun-Yong;Lee, Suk-Ki;Shin, Dong-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.263-272
    • /
    • 2021
  • At a time when securing driving safety is the most important in the development and commercialization of autonomous vehicles, AI and big data-based algorithms are being studied to enhance and optimize the recognition and detection performance of various static and dynamic vehicles. However, there are many research cases to recognize it as the same vehicle by utilizing the unique advantages of radar and cameras, but they do not use deep learning image processing technology or detect only short distances as the same target due to radar performance problems. Radars can recognize vehicles without errors in situations such as night and fog, but it is not accurate even if the type of object is determined through RCS values, so accurate classification of the object through images such as cameras is required. Therefore, we propose a fusion-based vehicle recognition method that configures data sets that can be collected by radar device and camera device, calculates errors in the data sets, and recognizes them as the same target.

A Sensor Module Overcoming Thick Smoke through Investigation of Fire Characteristics (화재 특성 고찰을 통한 농연 극복 센서 모듈)

  • Cho, Min-Young;Shin, Dong-In;Jun, Sewoong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.237-247
    • /
    • 2018
  • In this paper, we describe a sensor module that monitors fire environment by analyzing fire characteristics. We analyzed the smoke characteristics of indoor fire. Six different environments were defined according to the type of smoke and the flame, and the sensors available for each environment were combined. Based on this analysis, the sensors were selected from the perspective of firefighter. The sensor module consists of an RGB camera, an infrared camera and a radar. It is designed with minimum weight to fit on the robot. the enclosure of sensor is designed to protect against the radiant heat of the fire scene. We propose a single camera mode, thermal stereo mode, data fusion mode, and radar mode that can be used depending on the fire scene. Thermal stereo was effectively refined using an image segmentation algorithm, SLIC (Simple Linear Iterative Clustering). In order to reproduce the fire scene, three fire test environments were built and each sensor was verified.

The Evaluation of Usefulness of Pixelated Breast-Specific Gamma Imaging in Thyroid scan (Pixelated Breast-Specific Gamma Imaging(BSGI) 감마 카메라를 이용한 갑상선 검사의 유용성 평가)

  • Jung, Eun-Mi;Seong, Ji-Hye;Yoo, Hee-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.90-93
    • /
    • 2011
  • Purpose: A Pixelated BSGI gamma camera has features to enhance resolution and sensitivity and minimize the distance between detector and organs by narrow FOV. Therefore, it is known as useful device to examine small organs such as thyroid, parathyroid and gall bladder. In general, when we would like to enlarge the size of images and obtain high resolution images by gamma camera in nuclear medicine study, we use pinhole collimator. The purpose of this study is to evaluate the usefulness of Pixelated BSGI gamma camera and to compare to it using pinhole collimator in thyroid scan which is a study of typical small organs. Materials and methods: (1) The evaluation of sensitivity and spatial resolution: We measured sensitivity and spatial resolution of Pixelated BSGI with LEHR collimator and Infinia gamma camera with pinhole collimator. The sensitivity was measured by point source sensitivity test recommended by IAEA. We acquired images considering dead time in BSGI gamma camera for 100 seconds and used $^{99m}TcO4-\;400{\mu}Ci$ line source. (2) The evaluation of thyroid phantom: The thyroid phantom was filled with $^{99m}TcO4-$. After set 300 sec or 100 kcts stop conditions, we acquired images from both pixelated BSGI gamma camera and Infinia gamma camera with LEHR collimator. And we performed all thyroid studies in the same way as current AMC's procedure. Results: (1) the result of sensitivity: As a result, the sensitivity and spatial resolution of pixelated BSGI gamma camera were better than Infinia's. The sensitivities of pixelated BSGI and Infinia gamma camera were $290cps/{\mu}Ci$ and $350cps/{\mu}Ci$ respectively. So, the sensitivity of pixelated BSGI was 1.2 times higher than Infinia's (2) the result of thyroid phantom: Consequently, we confirmed that images of Pixelated BSGI gamma camera were more distinguishable between hot and cold spot compared with Infinia gamma camera. Conclusion: A pixelated BSGI gamma camera is able to shorten the acquisition time. Furthermore, the patients are exposed to radiation less than before by reducing amount of radiopharmaceutical doses. Shortening scan time makes images better by minimizing patient's breath and motion. And also, the distance between organ and detector is minimized because detector of pixelated BSGI gamma camera is small and possible to rotate. When patient cannot move at all, it is useful since device is feasible to move itself. However, although a pixelated BSGI gamma camera has these advantages, the effect of dead time occurs over 2000 cts/s since it was produced only for breast scan. So, there were low concentrations in organ. Therefore, we should consider that it needs to take tests to adjust acquisition time and amount of radiopharmaceutical doses in thyroid scan case with a pixelated BSGI gamma camera.

  • PDF

Steering Gaze of a Camera in an Active Vision System: Fusion Theme of Computer Vision and Control (능동적인 비전 시스템에서 카메라의 시선 조정: 컴퓨터 비전과 제어의 융합 테마)

  • 한영모
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.39-43
    • /
    • 2004
  • A typical theme of active vision systems is gaze-fixing of a camera. Here gaze-fixing of a camera means by steering orientation of a camera so that a given point on the object is always at the center of the image. For this we need to combine a function to analyze image data and a function to control orientation of a camera. This paper presents an algorithm for gaze-fixing of a camera where image analysis and orientation control are designed in a frame. At this time, for avoiding difficulties in implementing and aiming for real-time applications we design the algorithm to be a simple closed-form without using my information related to calibration of the camera or structure estimation.

Camera Parameter Extraction Method for Virtual Studio Applications by Tracking the Location of TV Camera (가상스튜디오에서 실사 TV 카메라의 3-D 기준 좌표와 추적 영상을 이용한 카메라 파라메타 추출 방법)

  • 한기태;김회율
    • Journal of Broadcast Engineering
    • /
    • v.4 no.2
    • /
    • pp.176-186
    • /
    • 1999
  • In order to produce an image that lends realism to audience in the virtual studio system. it is important to synchronize precisely between foreground objects and background image provided by computer graphics. In this paper, we propose a method of camera parameter extraction for the synchronization by tracking the pose of TV camera. We derive an equation for extracting camera parameters from inverse perspective equations for tracking the pose of the camera and 3-D transformation between base coordinates and estimated coordinates. We show the validity of the proposed method in terms of the accuracy ratio between the parameters computed from the equation and the real parameters that applied to a TV camera.

  • PDF

Effect of Die Bonding Epoxy on the Warpage and Optical Performance of Mobile Phone Camera Packages (모바일 폰 카메라 패키지의 다이 본딩 에폭시가 Warpage와 광학성능에 미치는 영향 분석)

  • Son, Sukwoo;Kihm, Hagyong;Yang, Ho Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • The warpage on mobile phone camera packages occurs due to the CTE(Coefficient of Thermal Expansion) mismatch between a thin silicon die and a substrate. The warpage in the optical instruments such as camera module has an effect on the field curvature, which is one of the factors degrading the optical performance and the product yield. In this paper, we studied the effect of die bonding epoxy on the package and optical performance of mobile phone camera packages. We calculated the warpages of camera module packages by using a finite element analysis, and their shapes were in good agreement showing parabolic curvature. We also measured the warpages and through-focus MTF of camera module specimens with experiments. The warpage was improved on an epoxy with low elastic modulus at both finite element analysis and experiment results, and the MTF performance increased accordingly. The results show that die bonding epoxy affects the warpage generated on the image sensor during the packaging process, and this warpage eventually affects the optical performance associated with the field curvature.