• 제목/요약/키워드: 4 wheel drive

검색결과 90건 처리시간 0.024초

차량 모델을 이용한 구동력 제어 시스템 (TCS)의 제어 방법 개발 (Development of a Control Method of Traction Control System Using Vehicle Model)

  • 송정훈;김흥섭;이대희;손민혁
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1203-1211
    • /
    • 2004
  • A traction control systems (TCSs) composed of either a wheel slip controller or a throttle valve controller or an integrated controller of both systems are proposed in this study. To validatethe dynamic characteristics of a vehicle and TCS, a full car model that can simulate the responses of both front wheel drive (2WD) and four wheel drive (4WD) vehicle is also developed. The wheel slip controller uses a sliding mode control scheme and the throttle valve is controlled by a PID controller. The results shows that tHe brake TCS and the engine TCS achieve rapid acceleration, and reduce slip angle on slippery road. When a vehicle is cornering and accelerating maneuver with the brake or engine TCS, understeer or oversteer occur, depending on the driving conditions. The integrated TCS prevents most of these problems and improves the stability and controllability of the vehicle.

4WD 차량의 후륜 구동력 제어를 위한 구동시 노면마찰계수 추정에 관한 연구 (A Study of Tire Road Friction Estimation for Controlling Rear Wheel Driving Force of 4WD Vehicle)

  • 박재영;심우진;허승진
    • 한국자동차공학회논문집
    • /
    • 제24권5호
    • /
    • pp.512-519
    • /
    • 2016
  • In this study, the tire road friction estimation(TRFE) algorithm for controlling the rear wheel driving force of a 4WD vehicle during acceleration is developed using a standard sensor in an ordinary 4WD passenger car and a speed sensor. The algorithm is constructed for the wheel shaft torque, longitudinal tire force, vertical tire force and maximum tire road friction estimation. The estimation results of shaft torque and tire force were validated using a torque sensor and wheel force transducer. In the algorithm, the current road friction is defined as the proportion calculated between longitudinal and vertical tire force. Slip slop methods using current road friction and slip ratio are applied to estimate the road friction coefficient. Based on this study's results, the traction performance, fuel consumption and drive shaft strength performance of a 4WD vehicle are improved by applying the tire road friction estimation algorithm.

4WD 및 4WS이 가능한 로더 개발 (II) (4륜 조향장치 및 로더 구성) (Development of Loader Equipped with 4Wd and 4WS (II) (4WS System and Construction of Loader))

  • 조현덕
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.150-157
    • /
    • 1999
  • In this study, the loader was completed that has 4-wheel gear driven drivetrain of study (Ⅰ), the 4-wheel steering with power wheel type, all-wheel traction system, and joy-stick type lever for hydraulic control valve. From driving test of the developed 4WD and 4WS type loader, we obtained that the minimum circling radius and the necessary width in circling motion reduced about 40% and 33% compared with 2WS type loader. Also, all-wheel traction system could keep the tires glued to the ground with greater stability, the power steering allowed a smoother operation, and the joy-stick type lever offered easily to control. Thus, the developed loader having these functions was very fit in a small cattle shed or rugged ground.

  • PDF

e-4WD 시스템 개발 (Development of electric Four Wheel Drive System)

  • 조희영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권1호
    • /
    • pp.10-17
    • /
    • 2016
  • e-4WD(Electric-4WD) system is a 4WD(4-Wheel Drive) System that can transform a car into a Hybrid System. e-4WD consists of a Motor, Inverter, Speed reducer and Clutch. The Motor, Speed reducer and Clutch are installed on the rear sub-frame as a chassis module type. The inverter is installed separately. Compared to a mechanical 4WD, the e-4WD system has many advantages. For example, the reduced number of drivetrain components makes better use of the space. Driving with a motor only at low speed improves fuel economy and reduces exhaust gas. Engine downsizing is available because the motor assists the engine. The performance of a conventional HEV(Hybrid Electric Vehicle) system can also be maintained. This paper proposes the specifications of components and the control logic for an e-4WD System. And the effect of the e-4WD system is proven using a test vehicle equipped with components under various test conditions.

차량주행시 동력전달계의 강제진동 해석 (Computer Simulation of Powertrain Forced Torsional Vibration)

  • 최은오;안병민;홍동표
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.853-860
    • /
    • 1997
  • For this study, the multi-degree of freedom analysis model of torsional vibration was developed. This model is combined with mass moment of inertia and torsional spring in two wheel drive and four wheel drive vehicle. We compared and analyzed torsional vibration characteristics by natural frequencies and mode shapes which are obtained by free vibration analysis of this model. And we studied torsional vibration contribution of driveline elements by performing the forced vibration analysis of engine excitation torque. The validity of this model is demonstrated by the field test. The reduction effect of the torsional vibration along the driveline design factor is presented by the analytical results.

  • PDF

OSEK/VDX Porting to the Two-Wheel Mobile Robot Based on the Differential Drive Method

  • Le Nguyen, Duy;Lee, Myung-Eui
    • Journal of information and communication convergence engineering
    • /
    • 제10권4호
    • /
    • pp.372-377
    • /
    • 2012
  • In this paper, we propose an implementation of a real-time operating system for the two-wheel mobile robot. With this implementation, we have the ability to control the complex embedded systems of the two-wheel mobile robot. The advantage of the real-time operating system is increasing the reliability and stability of the two-wheel mobile robot when they work in critical environments such as military and industrial applications. The real-time operating system which was ported to this implementation is open systems and the corresponding interfaces for automotive electronics (OSEK/VDX). It is known as the set of specifications on automotive operating systems, published by a consortium founded by the automotive industry. The mechanical design and kinematics of the two-wheel mobile robot are described in this paper. The contributions of this paper suggest a method for adapting and porting OSEK/VDX real-time operating system to the two-wheel mobile robot with the differential drive method, and we are also able to apply the real-time operating system to any complex embedded system easily.

4WD 및 4WS이 가능한 로더 개발(I) (4륜 구동 변속기) (development of Loader Equipped with 4WD and 4WS (I) (4 Wheel Driving Transmission))

  • 조현덕
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.141-148
    • /
    • 1998
  • A loader is construction & road or agricultural machinery for lifting, moving, and mixing. This study deals with the agricultural mini loader for stock raising farming. The performance of the machine is established by pulling power, working lifting capacity, and minimum circling radius, etc. Also, driving easiness and endurance are very important in manufacturing. Thus, this study has developed the loader with the 4-wheel driving equipment by gear transmission, the 4-wheel steering equipment by power handle steering type, and the equipment making four wheels touch simultaneously on the rugged ground. The developed loader having these functions was very fit in a small cattle shed or a rugged ground. This study is divided into two parts; (I) development of 4WS transmission and (II) construction of the loader by 4WS system and other equipments.

  • PDF

전륜구동형 승용차의 엔진마운트 시스템 최적설계 (An Optimal Design of the Front Wheel Drive Engine Mount System)

  • 김민수;김한성;최동훈
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.74-82
    • /
    • 1993
  • Optimal designs of a 3-point and a 4-point engine mount system are presented for reducing the idle shake of a Front Wheel Drive(FWD) vehicle. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is minimizing the transmitted force without violating the constraints such as static weight sag, resonant frequency and side limits of design variables. The Augmented Lagrange Multiplier(ALM) Method is used for solving the nonlinear constrained optimization. The generalized Jacobi and the impedence method are employed for a free vibration analysis and a forced response analysis. The trend of analysis results well meet that of the experimental results. The optimization results reveal that the 4-point system transmits less torque than the 3-point system. It is also found from the design sensitivity analysis that the vibration characteristics of the 4-point system is less sensitive than those of the 3-point system.

  • PDF

4-WD 동력전환장치의 변속 모터 구동부 최적화에 관한 연구 (A Study on the Shift Motor Driving System Optimization of 4-WD Power Transformation Device)

  • 염광욱;함성훈;오세훈
    • 한국정밀공학회지
    • /
    • 제30권11호
    • /
    • pp.1187-1192
    • /
    • 2013
  • In the case of 4 wheel drive (4-WD) type car, power switching occurs to 4-WD by operating lever or switch that operates power switching device attached in transfer case which can operate motor by electric signal. So if the RPM of motor is high, power switching will not exactly occur and can cause damage to gear in transfer case according to circumstances. So in this study, we applied 2 level of planet gear type motor spindle of motor drive part of a power train. And conducted decelerating to increase torque to switch power safe and accurately. Also, we researched efficiency of gear by designing reduction gear ratio and gear type and by calculating contact stress and bending strength. Based on researched content, we made drive head of power switching device and a reduction module which uses type that uses motor spindle as sun gear and ring gear as cover.

비틀림짙동 저감을 위한 추진축 설계에 관한 연구 (A Study on the Design of Propeller Shaft for Reduction of Torsional Vibration)

  • 최은오;안병민;홍동표;정태진
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.221-228
    • /
    • 1999
  • A full-time four wheel drive vehicle is driven literally full time by the front and the rear wheels. Front and rear drive shafts are rotated rapidly in the extremely torsional state, which can cause various vibration and noise problems. The purpose of this study is to reduce the vibration and the noise of the full -time four wheel drive vehicle. In this paper, both the causes and the methods for reduction of torsional vibration are suggested. For this study, the characteristics of the torsional vibration are analyzed by free and forced torsional vibration simulation. And this paper described the influence upon the torsional vibration with emphasis shafting system. The validity of simulation models is checked by the field test. The forced vibration simulation with the variations of shaft design factors are performed by the checked models. According to the simulation , the resonance region shifts and the torque fluctuation varies in the system,. Finally, the methods and the effects for the torsional vibration reduction in driveline are proposed.

  • PDF