• Title/Summary/Keyword: 4 point bending test

Search Result 289, Processing Time 0.025 seconds

An Experimental Study on Damage Mechanism of Glass Resulting Frojm Particle Impact (입자충격에 의한 유리의 손상기구에 관한 실험적 연구)

  • Seo, Chang-Min;Sin, Hyeong-Seop;Hwang, Byeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1903-1912
    • /
    • 1996
  • A quantitative study of impact damage of a soda-lime glass was carried out. An initiation and a propagation of cracks by the impact of two inds of steel ball was investigated. The fron, side and rear view of cracks were observed by a stereo-microscope. And the lowering of the benidng strength due to the impact of steel balls was examined through the 4-point bending test. A transparent glass is very helpful to understand and analyze the impact damage behavior of another brittle matereial. A deagdram about crack patterns according to the threshold impact velocity was sketched. A ring crack and a cone crack were formed at the low impact velocity. And as the impact velocity was higher, initial lateral crack was generated on the slanting surface of cone crack, and radial cracks were generated from the outermost ring crack. When the impact velocity of steel balls exceed a critical velocity, the contact site of specimens were crushed. According to the propagation of a cone crack, a rapid strength degradation occurred. In the specimen having crushed region, a bending strength was converged to a constant value instead of strength degradation.

An Experimental Study on the Damage Mechanism of Particle Impact in a Scratched Glass (표면거칠기를 가진 유리의 입자충격 손상기구에 관한 실험적 연구)

  • Suh, Chang-Min;Chung, Seong-Muk;Lee, Mun-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2196-2204
    • /
    • 1996
  • The damage mechanism by the impact of steel ball on the soda-lime glass having a different surface roughness was investigated. An initiation and a propagation behavior of cracks formed by each impact velocity were quantitatively studied. A 4-point bending test was carried out to evaluate the remaining bending strength of a scratched soda-lime glass which impacted by the steel ball. As the surface roughness was increased, the shape of cracks became more irregular rather than those of the smooth specimens. The phenomenon of turning up in the wing of cone cracks occurred even at the lower velocity than the critical velocity caused the crushing. The threshold velocity of cracks initiation generally became lower than those of smooth specimen. An initiation and a propagation behavior of radial cracks had no relation with the direction of scratch on the surface. The remaning benidng strength of the scratched specimen according to impact velocity had no big difference compared with those of the smooth specimen.

Bending Fatigue Characteristics of Surface-Antenna-Structure (복합재료 표면안테나 구조의 굽힘 피로특성 연구)

  • Kim D. H;Hwang W;Park H. C;Park W. S
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.22-27
    • /
    • 2004
  • The objective of this work is to design Surface Antenna Structure (SAS) and investigate fatigue behavior of SAS that is asymmetric sandwich structure. This term, SAS, indicates that structural surface becomes antenna. Constituent materials are selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, SSSFIP elements inserted into structural layers were designed fur satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was $16{\;}{\tiems}{\;}8$ array antenna. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of SAS was obtained. The fatigue load was determined experimentally at a 0.75 (1.875kN) load level, Experimental results were compared with single load level fatigue life prediction equations (SFLPE) and in good agreement with SFLPE. SAS concept is the first serious attempt at integration fur both antenna and composite engineers and promises innovative future communication technology.

Current Status of $SiC_{f}/SiC$ Composites Material in Fusion Reactor

  • Yoon, Han-Ki;Lee, Sang-Pill
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.166-171
    • /
    • 2007
  • The characterization of monolithic SiC and SiCf/SiC composite materials fabricated by NITE and RS processes was investigated in conjunction with the detailed analysis of their microstructure and density. The NITE-SiC based materials were fabricated, using a SiC powder with average size of 30 nm. RS- SiCf/SiC composites were fabricated with a complex slurry of C and SiC powder. In the RS process, the average size of starting SiC particle and the blending ratio of C/SiC powder were $0.4\;{\mu}m$ and 0.4, respectively. The reinforcing materials for /SiC composites were BN-SiC coated Hi-Nicalon SiC fiber, unidirectional or plain woven Tyranno SA SiC fiber. The characterization of all materials was examined by the means of SEM, EDS and three point bending test. The density of NITE-SiCf/SiC composite increased with increasing the pressure holding time. RS-SiCf/SiC composites represented a great decrease of flexural strength at the temperature of $1000\;^{\circ}C.$

  • PDF

Measurement of Defects with Scanning Acoustic Microscope and Acoustic Emission (초음파 현미경 및 AE에 의한 결함 측정)

  • Choi, Man-Yong;Park, Ik-Gun;Han, Eung-Kyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.118-125
    • /
    • 1991
  • Acoustic microscopy has attracted much interest recently as potential nondestructive evaluation technique for detecting and sizing defects of surface and sub-surface. Also acoustic emission testing method has been developed for detecting microcracks which is more than 30${\mu}m$ in length quantitatively on ceramics. In the present paper, acoustic emission during the four point bending test in hot-pressed sintered $Si_3N_4$ specimen which was stressed by thermal shock, has been measured by high sensitive sensing system. The surface and sub-surface cracks were detected by scanning acoustic micrscope of 800 MHz and conventional ultrasonic testing in C-scope image. The purpose was to investigate the location and size of cracks by SAM and AE technique, whose experimental data demonstrate good for detecting microcracks.

  • PDF

Multi-cracking modelling in concrete solved by a modified DR method

  • Yu, Rena C.;Ruiz, Gonzalo
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.371-388
    • /
    • 2004
  • Our objective is to model static multi-cracking processes in concrete. The explicit dynamic relaxation (DR) method, which gives the solutions of non-linear static problems on the basis of the steady-state conditions of a critically damped explicit transient solution, is chosen to deal with the high geometric and material non-linearities stemming from such a complex fracture problem. One of the common difficulties of the DR method is its slow convergence rate when non-monotonic spectral response is involved. A modified concept that is distinct from the standard DR method is introduced to tackle this problem. The methodology is validated against the stable three point bending test on notched concrete beams of different sizes. The simulations accurately predict the experimental load-displacement curves. The size effect is caught naturally as a result of the calculation. Micro-cracking and non-uniform crack propagation across the fracture surface also come out directly from the 3D simulations.

Performance Experiments of SHCC and High Tensile Reinforced Composite Concrete Slabs (SHCC 및 고장력 철근 복합 콘크리트 슬래브의 성능실험)

  • Moon, Hyung-Joo;Cho, Chang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.43-50
    • /
    • 2017
  • A type of one-way concrete composite slabs made by strain hardening cementitious composites (SHCC) deck combined with high tensile reinforcements was developed and evaluated by four-point slab bending test. The SHCC material was considered to have an high-ductile and strain hardening behavior in tension after cracking. From experimental comparisons with conventional reinforced concrete slab, the proposed SHCC and high tensile reinforced concrete composite slab showed more improved responses both in service and ultimate load capacities as well as in control of crack width and deflection.

Evaluation of High Temperature Strength Characteric in Joint Metal (접합재의 고온강도 특성 평가)

  • Huh, Sun-Chul;Park, Young-Chul;Yun, Han-Ki;Park, Won-Jo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.103-108
    • /
    • 2000
  • Since the ceramic/metal joint material is made at a high temperature, the residual stress development when it is cooled from bonding temperature to room temperature due to remarkable difference of thermal expansion coefficient between ceramic and metal. As residual stress at ceramic/metal joints influences the strength of joints, it is important to estimate residual stress quantitatively. In this study, it is attempted to estimate joint residual stress of $Si_3N_4/STS304$ joints quantitatively and to compare the strength of Joints. The difference of residual stress is measured when repeated thermal cycle is loaded under the conditions of the practical use of the ceramic/metal joint. And 4-point bending test is performed to examine the influence of residual stress on fracture strength. As a residual it is known that the stress of joint decreases as the number of thermal cycle increases.

  • PDF

Experimental Study for Evaluating Structural Behavior of RC Beams Strengthened by Tapered Ended CFRP Sheets (계단식 단부 형태의 탄소섬유시트로 보강된 RC보의 구조거동 평가에 관한 실험적 연구)

  • Kim, Young-Hee;Kim, Hee-Sun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.38-44
    • /
    • 2012
  • This paper presents experimental studies aiming at evaluation of structural behaviors of RC (Reinforced Concrete) beams externally strengthened with taper ended CFRPs(Carbon Fiber Reinforced Polymers). Experiments are performed with RC beams having different numbers of CFRP layers and length of each layer. The beams are subjected to four point-bending with simply supported condition. Test results of taper ended CFRPs and non-tapered CFRPs are compared and the better strengthening effect is observed from tapered ended CFRPs.

Influence of CuO Dopants on the Sintering Ability and Phase Stability of Yttria-Stabilized Tetragonal Zirconia Polycrystals (Y-TZP의 燒結性 및 相 安定性에 대한 CuO添加의 影響)

  • Pee, Jae-Hwan;Kim, Yun-Hae;Motozo Hayakawa
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.35-40
    • /
    • 1999
  • Effects of CuO addition on the sintering ability and the phase stability of Y-TZP. (Yttria doped Tetragonal Zirconia Polycrystals) were studied. The CuO dopants were found to be quite effective in reducing the sintering temperature to obtain full density and refining the grain size. The maximum allowable concentration of the dopants was limited to 0.3%mol% for CuO to maintain fully tetragonal phase. With the addition of these dopants, the flexual strength decreased by 20% in comparison with the undoped specimen but the fracture toughness increased by 15%.

  • PDF