• 제목/요약/키워드: 4 point bending test

검색결과 289건 처리시간 0.025초

Structural performance of GFRP-concrete composite beams

  • Yang, Yong;Xue, Yicong;Zhang, Tao;Tian, Jing
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.485-495
    • /
    • 2018
  • This paper presents the results of an experimental study on the structural performance of an innovative GFRP-concrete composite beam construction, which is reinforced with longitudinal GFRP pultruded box-profile and transverse steel stirrups. GFRP perfobond (PBL) shear connectors are employed to enhance the bonding performance between the GFRP profile and the concrete portion. To investigate the shear and flexural performance of this composite system, eight specimens were designed and tested under three-point and four-point bending. The main variables were the height of the composite beam and the shear span-to-depth ratio. The test results indicated that bonding cracks did not occur at the interface between the GFRP profile and the concrete until the final stage of the test. This shows that the specimens performed well as composite beams during the test and that the GFRP PBL connectors were reliable. Based on the test results, two calculation methods were used to determine the flexural and shear capacity of the composite beams. A comparative study of the test and theoretical results suggests that the proposed methods can reasonably predict both the flexural and shear capacities of the specimens, whereas the provisions of ACI 440 are relatively conservative on both counts.

$NbC_x-C_{1-x}/Y_2O_3$ 박막코팅을 이용한 $Al_2O_3/Ti$ 계면특성향상 -(2) 계면특성평가 (Enhanced $Al_2O_3/Ti$ Interfacial Properties Using $NbC_x-C_{1-x}/Y_2O_3$ Interlayers-(2) Determination of the Interfacial Properties)

  • 문철희
    • 한국세라믹학회지
    • /
    • 제34권9호
    • /
    • pp.921-926
    • /
    • 1997
  • Two NbCx-C1-x/Y2O3/Ti sputter-coated Al2O3 substrates (L 5.5 cm$\times$W 0.5 cm) were diffusion bonded together using hot press method at 95$0^{\circ}C$ for 3 hours under 1 MPa of applied pressure. 4 points bending tests were used to evaluate the mechanical performance of these precracked laminate beams. Two types of mechanical responses were observed: crack penetration through the interface for x=0.75, 1 and crack deflection into an interface for x=0.25, 0.5. The Al2O3/NbCx-C1-x/Y2O3/Ti system suggested here has been proves to be effective for the thermokinetical stability and tailorability of the interfaces of Al2O3/Ti composites at 95$0^{\circ}C$.

  • PDF

Depth estimation for surface-breaking cracks in steel-fiber reinforced concrete using ultrasonic surface waves

  • Ahmet S. Kirlangic;Zafer Iscan
    • Structural Monitoring and Maintenance
    • /
    • 제9권4호
    • /
    • pp.373-388
    • /
    • 2022
  • A USW based diagnostic procedure is presented for estimating the depth of surface-breaking cracks. The diagnosis is demonstrated on seven lab-scale SFRC beam specimens, which are subjected to the CMOD controlled three-point bending test to create real bending cracks. Then, the recorded multiple ultrasonic signals are examined with the signal processing techniques, including wavelet transform and two-dimensional Fourier transform, to investigate the relationships between the crack depth and two diagnostic indices, namely the attenuation coefficient and dispersion index (DI). Finally, the reliabilities of these indices for depth estimation are verified with the visually measured crack depths as well as the crack features obtained with a digital image processing algorithm. It is found that the DI outperforms the attenuation coefficient in depth estimation, where this index displays good agreement with the visual inspection for 86% of the inspected specimens.

Effect of nonlocal-nonsingular Fractional Moore-Gibson-Thompson theory in semiconductor cylinder

  • Iqbal Kaur;Kulvinder Singh
    • Advances in nano research
    • /
    • 제15권4호
    • /
    • pp.305-313
    • /
    • 2023
  • This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

Effect of the crude oil environment on the electrical conductivity of the epoxy nanocomposites

  • Seyed Morteza Razavi;Soroush Azhdari;Fathollah Taheri-Behrooz
    • Advances in nano research
    • /
    • 제15권4호
    • /
    • pp.285-294
    • /
    • 2023
  • This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

전부도재교의치의 코어재료에 따른 파절강도 관찰 (Observation of Fracture Strengths According to the Core Materials for All Ceramic Bridge)

  • 정인성;김치영
    • 대한치과기공학회지
    • /
    • 제32권4호
    • /
    • pp.351-356
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate the fracture strength between the core and veneering ceramic according to 2 core materials, In-Ceram Alumina and In-Ceram Zirconia, fabricated by electro ceramic layering technique. 2 different fixed partial denture cores of three units were veneered by veneering ceramic(Ceranion, Noritake) (n=10). Methods: The fracture strengths between the core and veneering ceramic were measured through the 3 point bending test. The interfaces between the core and veneering ceramic were observed with the X-ray dot mapping of EPMA. Results: The result of fracture strength was observed that IZP group, In-Ceram Zirconia core, had higher fracture strength. IPA group, In-Ceram Alumina core, had fracture strength of 359.9(${\pm}$86.2) N. IZP group, In-Ceram Zirconia core, had fracture strength of 823.2(${\pm}$243.0) N. X-ray dot mapping observation showed that a major element in the core and veneering ceramic of IPA group was alumina and silica, respectively. No binder was observed in interfaces between the core and veneering ceramic, and no ion diffusion or transition was observed between the core and veneering ceramic. However, apparent ion diffusion or transition was observed between the core and veneering ceramic of IZP group.

사파이어($\alpha$-$Al_2$$O_3$) 단결정에 있어 basal slip (0001)1/3<1120>전위 Part I : 전위속도 (Basal slip (0001)1/3 <1120> dislocation in sapphire ($\alpha$-$Al_2$$O_3$) single crystals Part I: Dislocation velocity)

  • 윤석영;이종영
    • 한국재료학회지
    • /
    • 제11권3호
    • /
    • pp.221-226
    • /
    • 2001
  • 사파이어 ($\alpha$-$Al_2$$O_3$) 단결정에 있어 basal slip (0001)1/3<1120>의 전위속도를 4점 곡강도를 이용하여, 측정하였다. 이 곡강도는 온도 $1200^{\circ}C$ 에서 $1400^{\circ}C$ 그리고 응력은 90MPa, 120MPa, 160MPa에서 행하여졌다. 전위속도는 4 점굽힘 시편의 굽힘변위속도에 의해 구하여졌다. 얻어진 전위속도를 이용하여 전위속도의 온도 및 응력 의존성에 대해 검토하였다. 전위속도의 온도의존성을 이용하여 basal slip 전위속도를 위한 활성화에너지를 구하였으며, 그 값은 대략 2.2$\pm$0.4eV이었다. 한편, 전위속도의 응력의존성을 나타내는 응력지수 m은 2.0$\pm$0.2이었다.

  • PDF

CFRC 복합재료의 기계적 고온특성 (The Mechanical Properties of CFRC under High Temperature)

  • 송관형
    • 한국재료학회지
    • /
    • 제11권4호
    • /
    • pp.258-265
    • /
    • 2001
  • 초고온용 내열성 재료인 CFRC(carbon fiber reinforced carbon)에 대하여 고온 하에서 기계적 물성을 측정하기 위하여 특수 제작한 고온로 속에서 $2000^{\circ}C$끼지 압축 및 굽힘강도 실험을 수행했다. 시편에 균일한 단축응력이 걸리도록 압축시험용과 4점 굽힘시험용 흑연으로된 치공구를 개발하여 실험했다. 시험결과 CFRC의 온도와 밀도가 증가함에 따라 강도가 증가하는 특성을 거시적으로 설명했으며, 고온하에서 시험기법을 부분적으로 정립했다. 8주자직으로 직조된 CFRC에 일반 강화섬유 복합재료에 적용되는 ASTM의 굽힘시험법에 따라 시편의 L(스판길이)/h(높이) 비를 정하는 것은 부적합함을 확인하고, 인장강도/층간 전단강도의 비에 따라 이 비율을 결정하는 새로운 식과 굽힘에 대한 파손 기준식을 제시했다.

  • PDF

Cu 두께에 따른 Cu-Cu 열 압착 웨이퍼 접합부의 접합 특성 평가 (Cu Thickness Effects on Bonding Characteristics in Cu-Cu Direct Bonds)

  • 김재원;정명혁;;;;이학주;현승민;박영배
    • 마이크로전자및패키징학회지
    • /
    • 제17권4호
    • /
    • pp.61-66
    • /
    • 2010
  • 3차원 TSV 접합 시접합 두께 및 전, 후 추가 공정 처리가 Cu-Cu 열 압착 접합에 미치는 영향을 알아보기 위해 0.25, 0.5, 1.5, 3.0 um 두께로 Cu 박막을 제작한 후 접합 전 $300^{\circ}C$에서 15분간 $Ar+H_2$, 분위기에서 열처리 후 $300^{\circ}C$에서 30분 접합 후 후속 열처리 효과를 실시하여 계면접착에너지를 4점굽힘 시험법을 통해 평가하였다. FIB 이미지 확인 결과 Cu 두께에 상관없이 열 압착 접합이 잘 이루어져 있었다. 계면접착에너지 역시 두께에 상관없이 $4.34{\pm}0.17J/m^2$ 값을 얻었으며, 파괴된 계면을 분석 한 결과 $Ta/SiO_2$의 약한 계면에서 파괴가 일어났음을 확인하였다.

CFRP 적층쉘의 적층구성 및 곡률 변화에 따른 관통 특성 (Penetration Characteristics of CFRP Laminated shells according to Stacking Sequence and Curvature)

  • 조영재;김영남;양인영
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.164-171
    • /
    • 2005
  • This study aims to examine an effect of stacking sequence and curvature on the penetration characteristic of a composite laminated shell. For the purpose, we manufactured specimens with different stacking sequences and curvatures, and conducted a penetration test using an air-gun. To examine an influence according to stacking sequence, as flat plate and curvature specimen had more plies, their critical penetration energy was higher, Critical penetration energies of specimen A and C with less interfaces somewhat higher than those of B and D with more interfaces. The reason that with less interfaces, critical penetration energy was higher is pre-impact bending stiffness of composite laminated shell with less interfaces was lower than that of laminated shell with more interfaces, but bending stiffness after impact was higher. And it is because interface, the weakest part of the composite laminated shell, was influenced by transverse impact. As curvature increases, critical penetration energy increases linearly. It is because as curvature increases, resistance to in-plane deformation as well as bending deformation increases, which need higher critical penetration energy. Patterns of cracks caused by penetration of composite laminated shells include interlaminar crack, intralaminar crack, and laminar fracture. A 0$^{\circ}$ply laminar had a matrix crack, a 90$^{\circ}$ply laminar had intralaminar crack and laminar fracture, and interface between 0$^{\circ}$and 90$^{\circ}$laminar had a interlaminar crack. We examined crack length and delamination area through a penetration test. For the specimen A and C with 2 interface, the longest circumferential direction crack length and largest delamination area were observed on the first interface from the impact point. For the specimen B and D with 4 interface, the longest crack length and largest delamination area were observed on the third interface from the impact point.