• Title/Summary/Keyword: 4 DOF

Search Result 329, Processing Time 0.028 seconds

A Study on the Reconstruction of Impact Force produced by the Collision between Two Elastic Structures (탄성 충돌체간의 충격력 재현에 관한 연구)

  • 조창기;류봉조;이규섭;박영필
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.49-58
    • /
    • 2003
  • In this study, the equation of motion of impacting elastic structures was derived through the theory, and the shape control of impact force using correlations of the dynamic characteristics and impact force history between two elastic structures was accomplished. Through numerical analysis and experiments, the classical contact mechanisms were verified, and the effects of the relative motion between impactor and elastic structure on the impact force shape were studied, and then the shape change of impact force depending on the impact position and mode shape of cantilever beam were analyzed. The 2-DOF impactor was designed and used. Reconstruction characteristics of impact force in cantilever beam were reviewed .

Performance Evaluation of Control Algorithms for 1/2 Tracked Vehicle with Semi-Active Suspension System (1/2 궤도차량에 대한 반능동 현수장치 제어 알고리즘들의 성능평가)

  • 윤일중;임재필;신휘범;이진규;신민재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.139-147
    • /
    • 2001
  • 2 DOF half-car model with 6 semi-active suspension units is utilized to evaluate the tracked vehicle dynamic performance simulated by several suspension control algorithms. The target of this research is to improve the ride comfort to maintain operator's handling capability when the tracked vehicle travels fast on the rough road. The control algorithms for suspension systems, such as full state feedback active, full state feedback semi-active, sky-hook active, sky-hook semi-active, and on-off systems, are evaluated and analyzed in view point of ride comfort. The dynamic performances of vehicle are expressed and evaluated by vibratory characteristic evaluation curves, performance indices and frequency characteristic curves. The simulation results show that the performances of sky-hook algorithms for ride comfort nearly follow those of full state feedback algorithms and on-off algorithm is recommendatory when the vehicle runs relatively fast.

  • PDF

Validation of Driver Steering Model with Vehicle Test (실차 실험을 통한 운전자 조향 모델의 검증)

  • Chung Taeyoung;Lee Gunbok;Yi Kyongsu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, validation of Driver Steering Model has been conducted. The comparison between the simulation model and vehicle test results shows that the model is very feasible for describing combined human driver and actual vehicle dynamic behaviors. The 3D vehicle model is consisted of 6-DOF sprung mass and 4-quarter car model for vehicle body dynamics. Powertrain model including differential gear and Pacejka tire model are applied. The driver steering model is also validated with vehicle test result. The driver steering model is based on angle and displacement error from the desired path, recognized by driver.

A Systematic Gain Tuning of PID Controller Based on the Concept of Time Delay Control

  • Lee, Jeong-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.39-44
    • /
    • 2008
  • In this paper, through the study of discrete implementation of time delay control (TDC) and PID control algorithm, a new systematic gain selection method for PID controller is proposed. An important advantage of this method is that it may be applied to real systems with very simple and systematic procedure. The proposed method is derived for SISO systems and then extended to MIMO system. Through simulation for the second order non-linear plant and experiment on 2-DOF robot, the effectiveness of the proposed method is confirmed. The proposed method could solve the problem of difficulty in gain tuning of existing PID controller.

Study on Wave Energy Generation of Multi-Floating Bodies for Energy Absorption by CFD

  • Li, Kui-Ming;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.38-43
    • /
    • 2013
  • In order to design a wave energy generating system, a 6-DOF analysis technique is applied to CFD analysis on of a floating body and the behavior is interpreted according to the nature of the incoming waves. A spring constant is adopted to control the motion of multi floating bodies and to calculate the total average power absorption. Three cases of different wavelengths namely 20D, 30D and 40D have been modeled to analyze the total average power absorption. The average power absorption not only varies with the position of the floating body but also varies with wavelength. From the results obtained, it is concluded that the maximum total average power absorption is 9W approximately in wavelength 30D and the minimum total average power absorption is 4.3W approximately in wavelength 40D.

Development of a Hybrid Haptic Master System Without Using a Force Sensor (힘 센서를 이용하지 않는 혼합형 햅틱 마스터 시스템의 개발)

  • Park, Gi-Hwan;Bae, Byeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1308-1316
    • /
    • 2001
  • A hybrid type master system is proposed to take the advantage of the link mechanism and magnetic levitation mechanism without using a force sensor. Two different types of electromagnetic actuators, moving coil type and moving magnet types are used to drive the master system which is capable of 4-DOF actuation. It is designed that the rotation motions about x-y axis are decoupled and the whole system is represented by simple dynamic equations. The force reflection is achieved by using the simple relation between the force and applied current and position. The simulation and experimental results are presented to show its performance.

Virtual Marionette Simulation Using Haptic Interfaces (햅틱 인터페이스 기반의 가상 마리오넷 시뮬레이션)

  • Kim, Su-Jeong;Zhang, Xin-Yu;Kim, Young-J.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.11 no.4
    • /
    • pp.39-44
    • /
    • 2005
  • 인터랙티브 컴퓨터 게임과 컴퓨터 애니메이션에서, 유관절체의 움직임을 직관적으로 제어하도록 하는 것은 어려운 문제로 인식되고 있다. 이런 분야에서는 대부분 움직임의 대상이 되는 캐릭터가 많은 관절로 연결되어 있는데, 이때 각 관절을 사용자의 의도대로 쉽게 조종할 수 있도록 해주는 인터페이스를 디자인하기가 어렵기 때문이다. 본 논문에서는 자유도(DOF)가 높은 캐릭터의 움직임을 제어하기 위해 오랫동안 인형극에서 사용되고 있는 마리오넷 조종 기법[5]을 응용한 마리오넷 시스템을 제안하고자 한다. 우리는 가상 마리오넷 시스템을 물리기반 모델링과 햅틱 인터페이스를 기반으로 구현하였고, 이 시스템을 통해 높은 자유도를 가지는 유관절체 캐릭터의 복잡한 움직임을 쉽게 생성해낼 수 있었다. 그리고 사용자에게 햅틱 포스 피드백을 줌으로써 더욱 정교한 마리오넷을 조작이 가능하도록 하였다. 이 시스템을 일반적인 유관절체에 적용한다면 다양한 움직임을 쉽고 빠르게 생성할 수 있을 것이다.

  • PDF

1-DOF Haptic Interface Controller Design considering Transparency and Robust Stability (투명성과 강인 안정성을 고려한 1자유도 햅틱 인터페이스 제어기 설계)

  • Eom, Gwang-Sik;Seo, Il-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.4
    • /
    • pp.213-219
    • /
    • 2000
  • In this paper, a controller design method is proposed for haptic interface considering transparency and robust stability. For this, a performance index for the transparency as performance measure is defined in the points of impedance matching and the optimal solution which is minimizing the performance index is obtained by solving H2 optimal problem. In haptic interface, the modeling uncertainties can be restricted to that of haptic device. To implement the robust stabilizing haptic controller to the uncertainties of haptic device, a robust stable condition using H$\infty$ norm from small gain theorem is proposed. To verify the effectiveness of the proposed haptic controller design scheme, numerical examples and experimental results are illustrated for virtual wall consisting of stiffness and damping factor.

  • PDF

Ship Collision Avoidance System Considering Ship' Maneuverability

  • Lee, Seung-Keon;Surendran, S.;Im, Nam-Kyun;Hwang, Sung-Jun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.95-100
    • /
    • 2006
  • A ship collision avoidance system is developed to control the avoidance action of ship actually and properly in wind forces. The 4-DOF maneuvering equations of motion ar derived to catty out the simulation of the motion of a ship, and the wind forces are considered as the external forces in the simulation. This study suggests a new avoidance system that could include the ship's maneuvering characteristics.

  • PDF

Control of robotic hand by behavior-based tactile servoing (촉각 센서를 이용한 로봇 손의 행위 기반 제어)

  • Park, No-Hoon;Oh, Sang-Rok;Park, Jong-Hyun;You, Bum-Jae;Oh, Yong-Hwan;Yoon, Do-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2399-2401
    • /
    • 2003
  • 시각 장애인의 경우 어떤 물체를 집어 들기 위해서는 처음에 물체를 더듬으면서 전체 형상을 파악하게 된다. 손의 촉각을 이용하여 충분히 물체의 특징을 파악하게 되면, 무게 중심이 될 만한 지점에 접촉하여 물체를 한 번쯤 들어보게 된다. 시각 등 다른 감각의 제한을 받는 조건에서 촉각만으로 물체 파지(object-graping)을 수행하고자 할 때, 일련의 행위들을 반복하게 된다. 본 논문은 촉각을 이용한 로봇 손의 행위 기반 제어 연구에 관한 것으로 R.Brooks가 제안한 subsumption architecture(SA)을 진화시켜 본 연구실에서 개발한 4DOF hand에 적용하였다.

  • PDF