• Title/Summary/Keyword: 4차 산업 혁명

Search Result 2,117, Processing Time 0.028 seconds

A Study on Consumers' Intention to Continue Use of Unmanned Stores in the Non-face-to-face Era : Focusing on the Moderating Effect of COVID-19 Social Risk (비대면시대 소비자의 무인점포 지속적이용의도에 관한 연구: COVID-19 사회적 위험의 조절효과를 중심으로)

  • Oh, Jong-chul
    • Journal of Venture Innovation
    • /
    • v.3 no.2
    • /
    • pp.1-21
    • /
    • 2020
  • Recently, the emergence of new technologies caused by the Fourth Industrial Revolution caused a great change not only in the overall society but also in the retail industry. In the retail industry, unmanned stores based on new technologies have emerged, changing the consumption behavior of consumers. In particular, the global pandemic caused by COVID-19, which appeared in December 2019, raised social risks, and as a result of this, the beginning of the non-face-to-face era, interest in unmanned stores is increasing. In this study, the effects of benefits factors (perceived usefulness, perceived economics, perceived enjoyment, relative advantages) and sacrifice factors (perceived risk, technicality) perceived by unmanned store users on continuous use intention through perceived value. In addition, it is a study to test through empirical analysis what role the social risk from COVID-19 plays in the process of consumption through unmanned stores. The purpose of this study is to provide strategic implications for the activation of unmanned stores in the non-face-to-face era. In this study, a total of 293 copies of data were collected for users of unmanned stores for hypothesis testing. In addition, the collected data was analyzed using SPSS 21.0 and AMOS 21.0 statistical programs. The results of the study are summarized as follows. First, it was found that the perceived benefits (perceived usefulness, perceived economics, perceived playfulness, and relative advantages) of unmanned stores all had a significant positive effect on perceived value. Second, it was found that all perceived sacrifices (perceived risk, technicality) of unmanned stores had a significant negative effect on perceived value. Third, it was found that the perceived value of unmanned stores had a significant positive effect on the intention to continue use. Finally, the social risk from COVID-19 has been shown to play a moderating role when the perceived sacrifice of unmanned stores affects the perceived value.

A Study on the development of Creative Problem Solving Classes for University Students (창의적 문제해결형 대학 수업 개발 연구)

  • Hyun-Ju Kim;Jinyoung Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.531-538
    • /
    • 2023
  • Recently, many university classes have been changing from instructor-centered classes to learner-centered classes, and universities are trying to establish a new direction for university education, especially to foster talented people suitable for the Fourth Industrial Revolution. To this end, universities are presenting various competencies necessary for students and focusing on research on efficient education plans for each competency. Among them, creativity is considered the most important competency that students should obtain in universities. Developing a creative problem-solving-based subject where various majors gather to produce results while conducting creative team activities away from desk classes is considered a meaningful subject to cultivate capacities suitable for the requirements of the times. Therefore, this study purpose to develop creative problem-solving-based subjects and analyze the results of class progress. This creative problem-solving-based class is an Action Learning class for step-by-step idea development, which starts with a theoretical lecture for creative idea development and then consists of five stages of Action Learning. The tasks of action learning used in this class consisted of ceramic expression to increase the intimacy of the formed group and the group's collective expression, ideas in life to combine and compress individual ideas into one, environmental improvement programs around schools, and finally UCC on various topics. In the theoretical lecture conducted throughout the class, a class was conducted on Scientific Thinking for creative problem solving, and then a group-type action learning class was conducted sequentially. This Action Learnin process gradually increased the difficulty level and led to in-depth learning by increasing the level of difficulty step by step.

The Effect of Mentoring on the Mentor's Job Satisfaction: Mediating Effects of Personal Learning and Self-efficacy (멘토링이 멘토의 직무만족도에 미치는 영향: 개인학습 및 자기효능감의 매개효과)

  • Lee, In Hong;Dong, Hak Lim
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.3
    • /
    • pp.157-172
    • /
    • 2023
  • The recent Fourth Industrial Revolution is accelerating changes due to digital transformation. According to this trend, the existing start-up paradigm is changing, and new business models based on new technologies and creative ideas are emerging. In addition, the diversity of mentoring relationships and environments such as online mentoring, reverse mentoring, group mentoring, and multiple mentoring is also increasing. However, most mentors in their 50s and 60s, who are mainly active in the start-up field, have been able to help mentees a lot based on their own experience and expertise, but they are having difficulty responding to the changing environment due to a lack of understanding and experience of new technologies and environments. To cope with these changes well, mentors must constantly study, acquire and apply the latest technologies to improve their understanding of new technologies and the environment. In addition, it is necessary to have an understanding and respect for the diversity of mentoring relationships and environments, and to maximize the effectiveness of mentoring by actively utilizing them. Therefore, mentors should recognize that they directly affect the growth and development of mentees, constantly acquire new knowledge and skills to maintain and develop expertise, and actively deliver their knowledge and experiences to mentees. Therefore, in this study, was tried to empirically analyze the relationship between mentoring's influence on mentor's job satisfaction through mentor's personal learning and self-efficacy. The results of the empirical analysis were as follows. Among the functions of mentoring, career function and role modeling were found to have a positive effect on both personal learning and self-efficacy, which are parameters, and job satisfaction, which is a dependent variable. On the other hand, psychological and social functions have a positive effect on personal learning, but they do not have an effect on self-efficacy and job satisfaction. In addition, as a result of analyzing the mediating effect, all mediating effects were confirmed for career functions, and only the mediating effect of self-efficacy was confirmed for role modeling. Through this study, mentoring is an important factor in promoting job satisfaction, personal learning and self-efficacy, and this study can be said to be academically and practically meaningful in that it confirmed personal learning and self-efficacy as factors that increase mentor's job satisfaction, and the focus of mentoring research was shifted from mentee to mentor to study the impact of mentoring on mentors.

  • PDF

A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation (IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로)

  • Kang, Ryeo-Eun;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.169-196
    • /
    • 2017
  • The fourth industrial revolution represents a revolutionary change in the business environment and its ecosystem, which is a fusion of Information Technology (IT) and other industries. In line with these recent changes, the Ministry of Employment and Labor of South Korea announced 'the Fourth Industrial Revolution Leader Training Program,' which includes five key support areas such as (1) smart manufacturing, (2) Internet of Things (IoT), (3) big data including Artificial Intelligence (AI), (4) information security, and (5) bio innovation. Based on this program, we can get a glimpse of the South Korean government's efforts and willingness to emit leading human resource with advanced IT knowledge in various fusion technology-related and newly emerging industries. On the other hand, in order to nurture excellent IT manpower in preparation for the fourth industrial revolution, the role of educational institutions capable of providing high quality IT education services is most of importance. However, these days, most IT educational institutions have had difficulties in providing customized IT education services that meet the needs of consumers (i.e., learners), without breaking away from the traditional framework of providing supplier-oriented education services. From previous studies, it has been found that the provision of customized education services centered on learners leads to high satisfaction of learners, and that higher satisfaction increases not only task performance and the possibility of business application but also learners' recommendation intention. However, since research has not yet been conducted in a comprehensive way that consider both antecedent and consequent factors of the learner's satisfaction, more empirical research on this is highly desirable. With the advent of the fourth industrial revolution, a rising interest in various convergence technologies utilizing information technology (IT) has brought with the growing realization of the important role played by IT-related education services. However, research on the role of IT education service quality in the context of IT education is relatively scarce in spite of the fact that research on general education service quality and satisfaction has been actively conducted in various contexts. In this study, therefore, the five dimensions of IT education service quality (i.e., tangibles, reliability, responsiveness, assurance, and empathy) are derived from the context of IT education, based on the SERVPERF model and related previous studies. In addition, the effects of these detailed IT education service quality factors on learners' educational satisfaction and their work application/recommendation intentions are examined. Furthermore, the moderating roles of learner position (i.e., practitioner group vs. manager group) and participation motivation (i.e., voluntary participation vs. involuntary participation) in relationships between IT education service quality factors and learners' educational satisfaction, work application intention, and recommendation intention are also investigated. In an analysis using the structural equation model (SEM) technique based on a questionnaire given to 203 participants of IT education programs in an 'M' IT educational institution in Seoul, South Korea, tangibles, reliability, and assurance were found to have a significant effect on educational satisfaction. This educational satisfaction was found to have a significant effect on both work application intention and recommendation intention. Moreover, it was discovered that learner position and participation motivation have a partial moderating impact on the relationship between IT education service quality factors and educational satisfaction. This study holds academic implications in that it is one of the first studies to apply the SERVPERF model (rather than the SERVQUAL model, which has been widely adopted by prior studies) is to demonstrate the influence of IT education service quality on learners' educational satisfaction, work application intention, and recommendation intention in an IT education environment. The results of this study are expected to provide practical guidance for IT education service providers who wish to enhance learners' educational satisfaction and service management efficiency.

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.

The Effects of Entrepreneurship Mentoring on Entrepreneurial Will and Mentoring Satisfaction: Focusing on Opus Entrepreneurship Education (창업 멘토링 기능이 창업의지와 멘토링 만족도에 미치는 영향: 오퍼스 창업교육을 중심으로)

  • Kim, Ki-Hong;Lee, Chang-Young;Joe, Jee-Hyung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.3
    • /
    • pp.211-226
    • /
    • 2023
  • As we transition into the post-COVID era, economic activities that were stagnant are regaining momentum. In particular, there is a growing trend of technology entrepreneurship driven by the opportunities of digital transformation in the Fourth Industrial Revolution. However, entrepreneurship education content is struggling to keep up with the rapid pace of technological change. This study aims to emphasize the importance of entrepreneurship mentoring as a crucial component of entrepreneurship education content that requires adaptation and advancement due to the increasing demand for technology entrepreneurship. This study redefines startup mentoring, which is differentiated from general mentoring, at the present time when the demand for startups, which increases with the declining employment rate, increases, and the development of quality startup education contents and securing professional startup mentors are required. According to the start-up stage, it is divided into preliminary entrepreneurs and early entrepreneurs, and the effect of entrepreneurship knowledge and self-efficacy among start-up mentoring functions on entrepreneurial will and mentoring satisfaction is improved by empirically researching the effects of start-up mentoring functions in the case of initial entrepreneurs as a moderating effect. To confirm the importance of entrepreneurship mentoring effect for. To this end, among the mentoring functions, entrepreneurship knowledge and self-efficacy were set as independent variables, and entrepreneurial will and mentoring satisfaction were set as dependent variables. The research model was designed and hypotheses were established. In addition, empirical analysis was conducted by conducting a questionnaire survey on trainees who received entrepreneurship mentoring education at ICCE Startup School and Opus Startup School. To summarize the results of the empirical analysis, first, among the entrepreneurship mentoring functions, entrepreneurship knowledge and self-efficacy were analyzed to have a significant positive (+) effect on entrepreneurial will. Second, among the entrepreneurship mentoring functions, entrepreneurship knowledge and self-efficacy were analyzed to have a significant positive (+) effect on mentoring satisfaction. Third, it was analyzed that entrepreneurship had no significant moderating effect on entrepreneurial knowledge and entrepreneurial will. Fourth, it was analyzed that entrepreneurship had no significant moderating effect on mentoring satisfaction. Fifth, it was found that entrepreneurship had a significant moderating effect between self-efficacy and will to start a business. As a result of the research analysis, the first implication is that the mentoring function in start-up education is analyzed to produce meaningful results for both the initial entrepreneurs and the prospective entrepreneurs in the will to start a business and satisfaction. . Second, it was analyzed that there was no significant relationship between whether a business was started and the mentoring function and effect. However, it was analyzed that the will to start a business through improvement of self-efficacy through mentoring was significantly related to whether or not to start a business. turned out to be helpful. Many start-up education programs currently conducted in Korea educate both early-stage entrepreneurs and prospective entrepreneurs at the same time for reasons such as convenience. However, through the results of this study, even in small-scale entrepreneurship mentoring, it is suggested that customized mentoring through detailed classification such as whether the mentee has started a business can be a method for successful entrepreneurship and high satisfaction of the mentee.

  • PDF