• Title/Summary/Keyword: 4대강사업

Search Result 211, Processing Time 0.032 seconds

Numerical analysis of flow and bed change at a confluence of the Namhan River and the Seom River using a two-dimensional model (2차원 수치모형을 이용한 남한강과 섬강 합류부 구간의 흐름 및 하상변동 해석)

  • Park, Moonhyung;Kim, Hyung Suk;Baek, Chang Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1273-1284
    • /
    • 2018
  • The flow and bed change were analyzed using the CCHE2D model, which is a two-dimensional numerical model, at a confluence of the Namhan River and Seom River where deposition occurs predominantly after the "Four Major Rivers Restoration Project." The characteristic of the junction is that the tributary of Seom River joined into the curved channel of the main reach of the Namhan River. The CCHE2D model analyzes the non-equilibrium sediment transport, and the adaptation lengths for the bed load and suspended load are important variables in the model. At the target area, the adaptation length for the bed load showed the greatest influence on the river bed change. Numerical simulation results demonstrated that the discharge ratio ($Q_r$) change affected the flow and bed change in the Namhan River and Seom river junction. When $Q_r{\leq}2.5$, the flow velocity of the main reach increased before confluence, thereby reducing the flow separation zone and decreasing the deposition inside the junction. When $Q_r$>2.5, there was a high possibility that deposition would be increased, thereby forming sand bar. Numerical simulation showed that a fixed sand bar has been formed at the junction due to the change of discharge ratio, which occurred in 2013.

Characteristics of chemical water quality and the empirical model analysis before and after the construction of Baekje Weir (금강수계 백제보 건설 전·후의 화학적 수질특성 및 경험적 모델 분석)

  • Kim, Yu-Jin;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.48-59
    • /
    • 2019
  • This study analyzed the water quality characteristics and developed empirical models prior to and after the construction of Baekje Weir, in the Geum River watershed between 2004-2017. The comparative evaluation of the surface water chemistry before and after the four major river projects on the weirs indicated that total phosphorus (TP), based on annual data, rapidly decrease after the construction of the weir while the total nitrogen(TN) decreased. Conversely, chlorophyll-a (CHL) concentration, which is a good indicator of primary productivity, increased after the construction of the weir together with an increase in specific conductivity. Simply put, the construction of the weir led to the decrease in concentrations of N and P due to the increased water residence time (WRT), whereas the CHL :TP ratio greatly increased in magnitude. The regression analysis of the empirical model indicated that CHL had no significant relation (r=0.068, p=0.6102, n=58) with TP before the weir construction, but had a relation with TP after the weir construction (r=0.286, p<0.05, n=56). Therefore, such conditions resulted in an increase in primary productivity on a given unit of phosphorus, resulting in frequent algal blooms. In contrast, seasonal suspended solids (SS) and TP increased during the monsoon period, compared to the pre-monsoon, thereby showing positive correlations (r>0.40, p<0.01, n=163) with precipitation. If the government consistently discharges water from the weir, the phosphorus concentration will be increased due to its reversion to a lotic waterbody from a lentic waterbody hereby reducing algal blooms in the future.

Performance evaluation of hyperspectral image for morphological mapping (초분광 영상을 활용한 하상 측정 성능 평가 )

  • Youngcheol Seo;Dongsu Kim;Hojun You;Yeonghwa Gwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.225-225
    • /
    • 2023
  • 하상 측정은 하천 유지관리, 수공구조물 설계 및 보수, 수생태 조사의 필수적인 자료이다. 최근 4대강 대규모 사업 이후 자연적 안정화로 인해 침식 및 재퇴적이 진행되어 정밀 하상 모니터링이 요구되고 있다. 통상적인 하상 조사 기법은 레벨측량 및 RTK-GPS 등을 활용하여 점단위로 직접 계측하는 기법과 수심이 깊을 경우 ADCP와 같은 음향측심기법을 통해 하상변동을 계측하고 있다. 하지만 점단위 직접 측정은 사구와 사련과 같은 하상 구조 교란 및 계측 시 위험을 동반하고 수심자료의 측정오차가 크게 발생하는 한계점이 존재한다. 또한 초음파 방식의 경우 막음길이와 바닥면 노이즈 등의 한계점으로 50 cm 미만의 저수심부 하상 측정이 불가능한 실정이다. 이러한 한계점을 극복하기 위해 최근 드론의 보급으로 수심라이다(Bathymetry LiDAR), SFM, 드론 탑재 초분광 영상을 활용한 초분광수심법과 같은 저고도, 고해상도의 비접촉식 면단위 하상 측정 기법이 대안으로 각광받고 있고 최근 관심은 해당 최신 기술의 성능 점검 및 적용성 평가에 있다. 따라서 본 연구에서는 초분광수심법 중 보편적으로 적용할 수 있는 최적밴드비분석(OBRA)의 성능 점검과 실무 적용성을 국내 하천을 대상으로 검토하였다. 해당 기술의 실무 적용성 평가항목 중 수심 적용 범위가 경제적이고 효율적인 성능 평가의 주된 항목이다. 선행 연구에 따르면 감천을 대상으로 저수심부의 성능 평가를 진행한 결과 상세한 하상계측이 가능하다고 제시하였다. 따라서 본 연구는 낙동강-황강 합류부를 대상으로 전형적인 평수기 탁도 조건에서 초분광수심법을 적용할 경우 최대측정가능수심의 범위를 결정하는 방법 및 결과를 제시하려고 한다. 또한 현장실험 당시 합천댐 방류로 인하여 황강의 탁도가 높아진 상태에 기인하여 고탁도 조건에서 초분광수심법의 적용성 평가도 추가 검토하였다. 해당 연구는 수심과 밴드비의 비선형성을 통해 최적 밴드비 분석의 결과로 도출될 수 있는 상관계수와 평균 제곱근 오차(RMSE)의 동향을 보아 다양한 시나리오의 배제수심을 통해 최대측정가능수심을 산정하였으며 그 이상의 범위는 수심맵 산정에서 제외하였다. 그 결과로 낙동강 본류에서 2.5 m 이하, 황강 지류에서 1.25 m 이하의 최대측정가능수심이 나타났고 해당 범위 이하에서는 상세한 하상이 나타났다. 또한 고탁도 조건인 황강에서는 낙동강에 비해 절반 수준의 최대측정가능수심 범위가 나타나 탁도 조건에 따른 초분광수심법의 한계가 있는 것을 확인하였다.

  • PDF

Development of a method for diagnosing the severity of water stage-discharge hysteresis using water surface slope (수면경사활용 수위-유량 이력현상 현저성 진단기법 개발)

  • Kim, Kyungdong;Kim, Dongsu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.54-54
    • /
    • 2021
  • 최근 홍수파 또는 댐 및 보 등의 하천 구조물과, 본류와 지류의 합류로 인해 발생하는 배수영향 등으로 하천에 고리형 수위-유량관계의 이력현상이 발생하여, 수위-유량관계식으 신뢰도가 저하된다고 판단하여, 대하천 본류와 합류부 인근 지류에 초음파기반유속계(ADCP)의 측정결과를 지표로 활용하는 자동유량관측소가 현재 58개소가 구축되어 운용되고 있다. 그러나, 4대강 사업으로 다기능보의 설치 등으로 인해 하천의 수리학적 특성이 변동되었고, 지류에서 주로 운용하는 수위-유량관계 기반 유량관측소에 수문사상으로 인해 발생한 홍수파 또는 배수영향으로 인한 하천에 수위-유량관계의 이력현상이 발생할 경우, 지류 수위관측소를 자동유량관측소로 대체할 필요성이 제기되고 있다. 기존의 자동유량관측소의 경우 홍수량이 기준이하로 발생할 경우 수위-유량 관계식으로 대체하는 경우도 있지만, 적용기준이 명확하지 않다. 또한, 하천의 수위-유량관계의 이력현상이 발생했을 경우 수위-수면경사의 이력현상도 같이 발생하게 된다. 수면경사의 경우 기존 수위관측소로부터 수위 측정결과로부터 산정할 수 있기에, 수면경사로부터 하천의 이력현상 현저성을 산정할 경우 자동유량 장치를 활용하지 않고 이력현상 현저성 진단을 할 수있다. 따라서, 본 연구에서는 신규 자동유량장치 설치, 기존 수위관측소의 자동유량관측소대체, 자동유량관측소에서 수위-유량관계의 활용 기준 마련 등을 명확하게 판단하기 위해 상류에 위치한 수위관측소의 수위 측정으로부터 하천의 수면경사를 산정하고 수면경사를 활용하여 수위-유량관계 이력현상의 패턴을 분석하여 현저성을 진단하는 기법을 개발하고자 한다. 이를 위해, 다기능보 설치 및 지류-본류로 인한 지류하천의 배수영향과 홍수파에 의해 발생한 수위-유량관계의 이력현상를 다양한 수문사상에 대하여 분석 하였다. 분석방법으로는 대상유역으로 수위-유량관계의 이력현상이 발생하는 영산강유역에 위치한 남평교, 나주대교 두 지점을 선정하고 자동유량관측소 상류에 위치한 기존 수위관측소의 수위 측정값으로부터 하천의 수면경사를 산정하고 수위-유량관계와 수위-수면경사관계의 패턴을 분석하고, 수위-수면경사의 이력현상으로 부터 수위-유량관계 이력현상의 현저성을 진단하였다. 분석결과 각 수문사상마다 수위-유량관계의 최대이력범위와, 수위-수면경사의 최대이력범위를 각각 무차원화시켜 관계그래프를 산정하였다. 남평교의 경우 수위-유량관계의 이력현상이 현저히 나타남에도 불구하고 수위-수면경사의 이력범위는 거의 없었다. 나주대교의 경우 수위-유량관계와, 수위-수면경사관계 각각의 이력범위가 현저히 나타나 관계를 분석하기 용이하였다. 또한, 나주대교관측소지점의 분석을 통하여 수위-수면경사 이력범위의 유의 수준을 두어 일정 이력범위(20%)가 발생한 경우, 수위-유량관계의 이력현상이 현저함을 알 수 있었다. 이러한 결과를 바탕으로 20%이상의 이력범위를 수위-수면경사의 이력범위로부터 수위-유량관계의 현저성을 판단하는 기준으로 제안하였다.

  • PDF

Development of Strategies to Improve Water Quality of the Yeongsan River in Connection with Adaptation to Climate Change (기후변화의 적응과 연계한 영산강 수질개선대책 개발)

  • Yong Woon Lee;Won Mo Yang;Gwang Duck Song;Yong Uk Ryu;Hak Young Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.3
    • /
    • pp.187-195
    • /
    • 2023
  • Almost all of the water from agricultural dams located to the upper of the Yeongsan river is supplied as irrigation water for farmland and thus is not discharged to the main stream of the river. Also, most of the irrigation water does not return to the river after use, adding to the lack of flow in the main stream. As a result, the water quality and aquatic health of the river have become the poorest among the four major rivers in Korea. Therefore, in this study, several strategies for water quality improvement of the river were developed considering pollution reduction and flow rate increase, and their effect analysis was performed using a water quality model. The results of this study showed that the target water quality of the Yeongsan river could be achieved if flow increase strategies (FISs) are intensively pursued in parallel with pollution reduction. The reason is because the water quality of the river has been steadily improved through pollution reduction but this method is now nearing the limit. In addition, rainfall-related FISs such as dam construction and water distribution adjustment may be less effective or lost if a megadrought continues due to climate change and then rainfall does not occur for a long time. Therefore, in the future, if the application conditions for the FISs are similar, the seawater desalination facility, which is independent of rainfall, should be considered as the priority installation target among the FISs. The reason is that seawater desalination facilities can replace the water supply function of dams, which are difficult to newly build in Korea, and can be useful as a climate change adaptation facility by preventing water-related disasters in the event of a long-term megadrought.

Effects and Improvement of Carbon Reduction by Greenspace Establishment in Riparian Zones (수변구역 조성녹지의 탄소저감 효과 및 증진방안)

  • Jo, Hyun-Kil;Park, Hye-Mi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.16-24
    • /
    • 2015
  • This study quantified storage and annual uptake of carbon for riparian greenspaces established in watersheds of four major rivers in South Korea and explored desirable strategies to improve carbon reduction effects of riparian greenspaces. Greenspace structure and planting technique in the 40 study sites sampled were represented by single-layered planting of small trees in low density, with stem diameter at breast height of $6.9{\pm}0.2cm$ and planting density of $10.4{\pm}0.8trees/100m^2$ on average. Storage and annual uptake of carbon per unit area by planted trees averaged $8.2{\pm}0.5t/ha$ and $1.7{\pm}0.1t/ha/yr$, respectively, increasing as planting density got higher. Mean organic matter and carbon storage in soils were $1.4{\pm}0.1%$ and $26.4{\pm}1.5t/ha$, respectively. Planted trees and soils per ha stored the amount of carbon emitted from gasoline consumption of about 61 kL, and the trees per ha annually offset carbon emissions from gasoline use of about 3 kL. These carbon reduction effects are associated with tree growth over five years to fewer than 10 years after planting, and predicted to become much greater as the planted trees grow. This study simulated changes in annual carbon uptake by tree growth over future 30 years for typical planting models selected as different from the planting technique in the study sites. The simulation revealed that cumulative annual carbon uptake for a multilayered and grouped ecological planting model with both larger tree size and higher planting density was approximately 1.9 times greater 10 years after planting and 1.5 times greater 30 years after than that in the study sites. Strategies to improve carbon reduction effects of riparian greenspaces suggest multilayered and grouped planting mixed with relatively large trees, middle/high density planting of native species mixed with fast-growing trees, and securing the soil environment favorable for normal growth of planting tree species. The research findings are expected to be useful as practical guidelines to improve the role of a carbon uptake source, in addition to water quality conservation and wildlife inhabitation, in implementing riparian greenspace projects under the beginning stage.

Development of tracer concentration analysis method using drone-based spatio-temporal hyperspectral image and RGB image (드론기반 시공간 초분광영상 및 RGB영상을 활용한 추적자 농도분석 기법 개발)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun;Han, Eunjin;Kwon, Siyoon;Kim, Youngdo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.623-634
    • /
    • 2022
  • Due to river maintenance projects such as the creation of hydrophilic areas around rivers and the Four Rivers Project, the flow characteristics of rivers are continuously changing, and the risk of water quality accidents due to the inflow of various pollutants is increasing. In the event of a water quality accident, it is necessary to minimize the effect on the downstream side by predicting the concentration and arrival time of pollutants in consideration of the flow characteristics of the river. In order to track the behavior of these pollutants, it is necessary to calculate the diffusion coefficient and dispersion coefficient for each section of the river. Among them, the dispersion coefficient is used to analyze the diffusion range of soluble pollutants. Existing experimental research cases for tracking the behavior of pollutants require a lot of manpower and cost, and it is difficult to obtain spatially high-resolution data due to limited equipment operation. Recently, research on tracking contaminants using RGB drones has been conducted, but RGB images also have a limitation in that spectral information is limitedly collected. In this study, to supplement the limitations of existing studies, a hyperspectral sensor was mounted on a remote sensing platform using a drone to collect temporally and spatially higher-resolution data than conventional contact measurement. Using the collected spatio-temporal hyperspectral images, the tracer concentration was calculated and the transverse dispersion coefficient was derived. It is expected that by overcoming the limitations of the drone platform through future research and upgrading the dispersion coefficient calculation technology, it will be possible to detect various pollutants leaking into the water system, and to detect changes in various water quality items and river factors.

The Change in Patterns and Conditions of Algal Blooms Resulting from Construction of Weirs in the Youngsan River: Long-term Data Analysis (보 건설에 따른 영산강의 조류 발생 및 환경 변화: 수질측정망 장기 자료 분석)

  • Shin, Yongsik;Yu, Haengsun;Lee, Hakyoung;Lee, Dahye;Park, Gunwoo
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.238-252
    • /
    • 2015
  • The effect of weir construction (2009~2011) was investigated on algal bloom dynamics and surrounding conditions in the Youngsan River by analyzing the long-term (2001~2014) data provided by the Water Information System, Ministry of Environment. The data include chlorophyll a and water properties such as total suspended solids (TSS), ammonium ($NH_4{^+}$), nitrate ($NO_3{^-}$), orthophosphate ($PO{_4}^{3-}$), total nitrogen (TN), total phosphorus (TP) and DIN/DIP molar ratio collected from 12 stations along the channel of the river. Temporal variations were examined using data collected monthly from 2001~2014 and Box-Whisker plot was used to examine the difference in algal bloom dynamics between before (2006~2008) and after (2012~2014) the weir construction. Pearson's correlation analysis was also used to analyze the correlation of parameters. The results showed that TSS affecting water turbidity increased during the construction but decreased especially at the stations located in the upper and middle regions of the river after the construction. Ammonium concentrations increased whereas the concentrations of other nutrients decreased after the construction inducing an increase in N:P molar ratio. Chlorophyll a decreased suddenly during the construction but increased clearly after the construction at the stations where TSS decreased. This indicates that algal blooms can develop in the Youngsan River due to a decrease in turbidity that increases light penetration in water column although the concentrations of nutrients such as orthophosphate were reduced after the weir construction.

Fish Distribution, Compositions and Community Structure Characteristics during Juksan-Weir Construction in Yeongsan River Watershed (영산강 수계에서 죽산보 건설 중의 어류 분포.종 조성 및 군집구조 특성)

  • Ko, Dae-Geun;Choi, Ji-Woong;Lim, Byung Jin;Park, Jong Hwan;An, Kwang-Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.6
    • /
    • pp.892-901
    • /
    • 2012
  • The purpose of this research was to analyze fish fauna, distribution patterns, and fish community structures in the Juksan-Weir regions of upper weir(R-UW) and lower weir(R-LW), which was constructed in 2011 on Yeongsan River watershed. Our outcomes will provide valuable information in the impact analysis of weir constructions next decades, even if the current research is limited to distributions and fauna studies of fishes. The fishes observed were 8 family and 30 species in all the sites, and the number of the species in the regions of R-UW and R-LW was 23(938 individuals) and 27(1,680 individuals), respectively, indicating greater abundance in the lower region of Juksan-Weir. Most dominant species was Opsarichthys uncirostris amurensis with relative abundance of 42%, and this species had greater abundance in the R-LW(49%) than in the R-UW(30%). Coilia nasus, was the migratory fish sampled in this region and had no differences of abundance between the two regions. The extic species observed were Carassius cuvieri, Lepomis macrochirus, and Micropterus salmoides. The two formers of Carassius cuvieri(1.2%) and Lepomis macrochirus(3.7%) dominated in the R-UW, whereas Micropterus salmoides had greater dominance in the region of R-LW. According to tolerance guild analysis, the proportion of sensitive species ranged from 0.4 to 0.5%, and that of tolerant species ranged from 65% to 70%, implying a severe pollution of nutrients and organic matters in the water body. In the mean time, according to trophic guild analysis, the proportion of carnivores(57 - 77%) was evidently higher than that of insectivores(10 - 20%), indicating a dominance of the carnivores. Especially, high abundance of the bass, exotic species, may disturb the fish overall food chain, so the efficient ecosystem management may be required for the conservation of endemic species. When we examined fish data files of last 60 years, the species of Culter brevicauda, designated as endangered species, was observed firstly in our research area and the total number was 5 individuals(0.2% of the total). So, this region observed should be conserved as a protection zone and further monitoring studies should be done in the future.

Vegetation classification based on remote sensing data for river management (하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법)

  • Lee, Chanjoo;Rogers, Christine;Geerling, Gertjan;Pennin, Ellis
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.6-7
    • /
    • 2021
  • Vegetation development in rivers is one of the important issues not only in academic fields such as geomorphology, ecology, hydraulics, etc., but also in river management practices. The problem of river vegetation is directly connected to the harmony of conflicting values of flood management and ecosystem conservation. In Korea, since the 2000s, the issue of river vegetation and land formation has been continuously raised under various conditions, such as the regulating rivers downstream of the dams, the small eutrophicated tributary rivers, and the floodplain sites for the four major river projects. In this background, this study proposes a method for classifying the distribution of vegetation in rivers based on remote sensing data, and presents the results of applying this to the Naeseong Stream. The Naeseong Stream is a representative example of the river landscape that has changed due to vegetation development from 2014 to the latest. The remote sensing data used in the study are images of Sentinel 1 and 2 satellites, which is operated by the European Aerospace Administration (ESA), and provided by Google Earth Engine. For the ground truth, manually classified dataset on the surface of the Naeseong Stream in 2016 were used, where the area is divided into eight types including water, sand and herbaceous and woody vegetation. The classification method used a random forest classification technique, one of the machine learning algorithms. 1,000 samples were extracted from 10 pre-selected polygon regions, each half of them were used as training and verification data. The accuracy based on the verification data was found to be 82~85%. The model established through training was also applied to images from 2016 to 2020, and the process of changes in vegetation zones according to the year was presented. The technical limitations and improvement measures of this paper were considered. By providing quantitative information of the vegetation distribution, this technique is expected to be useful in practical management of vegetation such as thinning and rejuvenation of river vegetation as well as technical fields such as flood level calculation and flow-vegetation coupled modeling in rivers.

  • PDF