• 제목/요약/키워드: 3d point cloud

검색결과 396건 처리시간 0.023초

불규칙 3차원 데이터를 위한 기하학정보를 이용한 딥러닝 기반 기법 분석 (Survey on Deep Learning Methods for Irregular 3D Data Using Geometric Information)

  • 조성인;박해주
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.215-223
    • /
    • 2021
  • 3D data can be categorized into two parts : Euclidean data and non-Euclidean data. In general, 3D data exists in the form of non-Euclidean data. Due to irregularities in non-Euclidean data such as mesh and point cloud, early 3D deep learning studies transformed these data into regular forms of Euclidean data to utilize them. This approach, however, cannot use memory efficiently and causes loses of essential information on objects. Thus, various approaches that can directly apply deep learning architecture to non-Euclidean 3D data have emerged. In this survey, we introduce various deep learning methods for mesh and point cloud data. After analyzing the operating principles of these methods designed for irregular data, we compare the performance of existing methods for shape classification and segmentation tasks.

포인트 클라우드 기반 선체 구조 변형 탐지 알고리즘 적용 연구 (Application of Point Cloud Based Hull Structure Deformation Detection Algorithm)

  • 송상호;이갑헌;한기민;장화섭
    • 대한조선학회논문집
    • /
    • 제59권4호
    • /
    • pp.235-242
    • /
    • 2022
  • As ship condition inspection technology has been developed, research on collecting, analyzing, and diagnosing condition information has become active. In ships, related research has been conducted, such as analyzing, detecting, and classifying major hull failures such as cracks and corrosion using 2D and 3D data information. However, for geometric deformation such as indents and bulges, 2D data has limitations in detection, so 3D data is needed to utilize spatial feature information. In this study, we aim to detect hull structural deformation positions. It builds a specimen based on actual hull structure deformation and acquires a point cloud from a model scanned with a 3D scanner. In the obtained point cloud, deformation(outliers) is found with a combination of RANSAC algorithms that find the best matching model in the Octree data structure and dataset.

포인트 클라우드 데이터 기반 군집형 솔리드 건물 모델 자동 생성 기법 (Automatic Generation of Clustered Solid Building Models Based on Point Cloud)

  • 김한결;황윤혁;이수암
    • 대한원격탐사학회지
    • /
    • 제36권6_1호
    • /
    • pp.1349-1365
    • /
    • 2020
  • 최근 스마트 시티, 디지털 트윈 등에 실제 3차원 좌표를 취득할 수 있는 이점에 따라 포인트 클라우드를 이용한 모델 생성에 관한 연구가 늘어나고 있으며, 건물 형상 및 텍스처의 수정이 용이한 솔리드 모델에 대한 요구가 늘어나고 있다. 이에 따라 본 논문에서는 포인트 클라우드 데이터를 기반으로 군집형 솔리드 건물 모델을 생성하는 방법을 제안한다. 제안하는 방법은 총 다섯단계로 구성된다. 첫 단계에서는 포인트 클라우드의 평면성 분석을 통해 지면을 제거하였다. 두 번째 단계에서는 지면이 제거된 포인트 클라우드에서 건물 영역을 추출하였다. 세 번째 단계에서는 건물의 세부 구조물 영역을 추출하였다. 네 번째 단계에서는 추출된 영역에 3차원 좌표정보가 부여된 3차원 건물 모델의 형상을 생성하였다. 마지막 단계에서는 건물 모델 형상에 텍스처를 부여하여 3차원 건물 솔리드 모델을 생성하였다. 제안하는 방법의 검증을 위하여 상용 소프트웨어를 이용해 무인항공기 영상으로부터 포인트 클라우드를 추출하여 실험하였다. 그 결과, 포인트 클라우드 내에 존재하는 일정 높이 이상의 모든 건물에 대하여 포인트 클라우드 대비 위치오차 1 m 내외의 3차원 건물 형상을 생성하고, 원본 영상 해상도 대비 2배 이내의 해상도를 갖는 텍스처링이 수행된 3차원 모델이 생성되는 것을 확인하였다.

2차원 딜로니 삼각화를 이용한 3차원 메시 생성 (3D Mesh Creation using 2D Delaunay Triangulation of 3D Point Clouds)

  • 최지훈;윤종현;박종승
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제13권4호
    • /
    • pp.21-27
    • /
    • 2007
  • 본 논문에서는 3차원 점집합으로부터 3차원 메시를 생성하는 효율적인 기법을 소개한다. 대표적인 3차원 삼각화 방법으로 3차원 딜로니 삼각화 기법이 있으나 물체의 표면만을 고려한 메시 생성을 위한 방법으로 비효율적인 측면이 있다. 본 논문에서는 적은 계산량으로 물체의 표면 메시를 생성하는 기법을 소개한다. 물체의 각 영역을 분할하고 각 영역에 대해서 2차원 딜로니 삼각화를 적용하여 3차원 메시 구조를 얻는다. 3차원 점 집합에 대해 OBB(Oriented Bounding Box)를 계산하고 이를 기준으로 점 집합을 여러 분할 영역으로 나누고 각 부분 점 집합에 대해서 2차원 딜로니 삼각화를 실시한다. 각 2차원 삼각화 결과는 점전적으로 전체 메시에 병합된다. 또한 병합된 메시에서 잘못된 에지의 연결을 제거함으로써 객체의 삼각 분할 결과를 향상시킨다. 제안된 메시 생성 기법은 다양한 영상 기반 모델링 응용에서 효과적으로 적용될 수 있다.

  • PDF

포인트 클라우드 콘텐츠 해상도 향상을 위한 점진적 렌더링 방법 (A Progressive Rendering Method to Enhance the Resolution of Point Cloud Contents)

  • 이희제;윤준영;김종욱;김찬희;박종일
    • 방송공학회논문지
    • /
    • 제26권3호
    • /
    • pp.258-268
    • /
    • 2021
  • 포인트 클라우드 콘텐츠는 3차원 포인트로 실제 객체를 나타내는 몰입형 콘텐츠이다. 포인트 클라우드 데이터를 획득하거나 포인트 클라우드 데이터를 인코딩 및 디코딩하는 과정에서 포인트 클라우드 콘텐츠의 해상도가 저하될 수 있다. 본 논문에서는 프레임 간 정합을 통해 순차적으로 포인트 클라우드 콘텐츠의 해상도를 점진적으로 향상시키는 방법을 제안한다. 포인트 클라우드 데이터를 정합하기 위해 ICP(Iterative Closest Point) 알고리즘이 일반적으로 사용된다. 기존 ICP 알고리즘은 강체를 변환할 수 있지만 포인트 클라우드 콘텐츠와 같이 로컬에서 서로 다른 방향으로 모션 벡터를 갖는 비 강체에 대해서는 변환이 불가능하다는 단점이 있다. 현재 프레임의 포인트 클라우드와 이전 프레임 사이의 포인트를 쌍을 만들고 만들어진 쌍의 움직임양을 계산하여 보상해주는 방법으로 기존 ICP 정합에서의 한계를 극복하였다. 이러한 방식으로 프레임 사이에 포인트를 정합하는 과정을 통해 기하학적 움직임이 있는 포인트 클라우드 콘텐츠의 해상도가 향상됨을 보였다.

2D Delaunay Triangulation을 이용한 점군 절단 (Point Cloud Slicing Based on 2D Delaunay Triangulation)

  • 박형태;장민호;박상철
    • 한국정밀공학회지
    • /
    • 제24권5호
    • /
    • pp.127-134
    • /
    • 2007
  • Presented in the paper is an algorithm to generate a section curve by slicing a point cloud including tens of thousands of points. Although, there have been previous research results on the slicing problem, they are quite sensitive on the density variations of the point cloud, as well as on the local noise in the point cloud. To relive the difficulties, three technological requirements are identified; 1) dominant point sampling, 2) avoiding local vibration, and 3) robustness on the density changes. To satisfy these requirements, we propose a new slicing algorithm which is based on a node-sphere diagram. The algorithm has been implemented and tested with various examples.

멀티-뷰 영상들을 활용하는 3차원 의미적 분할을 위한 효과적인 멀티-모달 특징 융합 (Effective Multi-Modal Feature Fusion for 3D Semantic Segmentation with Multi-View Images)

  • 배혜림;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권12호
    • /
    • pp.505-518
    • /
    • 2023
  • 3차원 포인트 클라우드 의미적 분할은 각 포인트별로 해당 포인트가 속한 물체나 영역의 분류 레이블을 예측함으로써, 포인트 클라우드를 서로 다른 물체들이나 영역들로 나누는 컴퓨터 비전 작업이다. 기존의 3차원 의미적 분할 모델들은 RGB 영상들에서 추출하는 2차원 시각적 특징과 포인트 클라우드에서 추출하는 3차원 기하학적 특징의 특성을 충분히 고려한 특징 융합을 수행하지 못한다는 한계가 있다. 따라서, 본 논문에서는 2차원-3차원 멀티-모달 특징을 이용하는 새로운 3차원 의미적 분할 모델 MMCA-Net을 제안한다. 제안 모델은 중기 융합 전략과 멀티-모달 교차 주의집중 기반의 융합 연산을 적용함으로써, 이질적인 2차원 시각적 특징과 3차원 기하학적 특징을 효과적으로 융합한다. 또한 3차원 기하학적 인코더로 PTv2를 채용함으로써, 포인트들이 비-정규적으로 분포한 입력 포인트 클라우드로부터 맥락정보가 풍부한 3차원 기하학적 특징을 추출해낸다. 본 논문에서는 제안 모델의 성능을 분석하기 위해 벤치마크 데이터 집합인 ScanNetv2을 이용한 다양한 정량 및 정성 실험들을 진행하였다. 성능 척도 mIoU 측면에서 제안 모델은 3차원 기하학적 특징만을 이용하는 PTv2 모델에 비해 9.2%의 성능 향상을, 2차원-3차원 멀티-모달 특징을 사용하는 MVPNet 모델에 비해 12.12%의 성능 향상을 보였다. 이를 통해 본 논문에서 제안한 모델의 효과와 유용성을 입증하였다.

드론 촬영 영상을 활용한 3D 라이브러리 플랫폼 구축 및 강화지석묘에의 적용 (3D Library Platform Construction using Drone Images and its Application to Kangwha Dolmen)

  • 김경호;김민정;이정진
    • 만화애니메이션 연구
    • /
    • 통권48호
    • /
    • pp.199-215
    • /
    • 2017
  • 최근 군사적 목적으로 제작된 드론의 활용이 일반적인 용도로 그 사용처가 확대되고 있다. 콘텐츠 제작에 있어 드론이 활발하게 사용되고 있는데 특히 영상 촬영 분야에서 가장 눈에 띄게 나타나고 있다. 본 논문에서는 드론에서 촬영된 2차원 영상 데이터를 이용하여 포인트 클라우드 및 3차원 모델을 생성하고 메쉬 데이터를 3차원 라이브러리로 모듈화한 플랫폼을 개발한다. 이를 위하여 먼저 드론을 이용하여 2차원 영상 데이터를 취득하고, 취득된 2차원 영상 데이터를 기반으로 하여 포인트 클라우드를 생성하고, 추출된 포인트 클라우드를 3차원 메쉬 데이터로 변환한 후 변환되어진 3차원 데이터를 다양한 분야에 활용될 수 있도록 서비스 라이브러리 플랫폼을 개발한다. 본 논문에서 개발된 플랫폼은 촬영된 데이터를 3차원 데이터로 변환하여 영화, 드라마, 다큐멘터리 등의 제작 시에 특수 영상을 위한 실제 세트 제작 비용 절감 및 시간을 단축 할 수 있고, 실감 미디어 및 특수 영상, 전시 영상 분야의 디지털 콘텐츠 제작 전문 인력 창출에 기여 할 수 있다.

딥러닝 기반 LNGC 화물창 스캐닝 점군 데이터의 비계 시스템 객체 탐지 및 후처리 (Object Detection and Post-processing of LNGC CCS Scaffolding System using 3D Point Cloud Based on Deep Learning)

  • 이동건;지승환;박본영
    • 대한조선학회논문집
    • /
    • 제58권5호
    • /
    • pp.303-313
    • /
    • 2021
  • Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.

경계 복셀 모델을 이용한 임의 형상의 비조직화된 점군으로부터의 3 차원 완전 형상 복원 (Complete 3D Surface Reconstruction from an Unstructured Point Cloud of Arbitrary Shape by Using a Bounding Voxel Model)

  • 이일섭;김석일
    • 대한기계학회논문집A
    • /
    • 제30권8호
    • /
    • pp.906-915
    • /
    • 2006
  • This study concerns an advanced 3D surface reconstruction method that the vertices of surface model can be completely matched to the unstructured point cloud measured from arbitrary complex shapes. The concept of bounding voxel model is introduced to generate the mesh model well-representing the geometrical and topological characteristics of point cloud. In the reconstruction processes, the application of various methodologies such as shrink-wrapping, mesh simplification, local subdivision surface fitting, insertion of is isolated points, mesh optimization and so on, are required. Especially, the effectiveness, rapidity and reliability of the proposed surface reconstruction method are demonstrated by the simulation results for the geometrically and topologically complex shapes like dragon and human mouth.