3D data can be categorized into two parts : Euclidean data and non-Euclidean data. In general, 3D data exists in the form of non-Euclidean data. Due to irregularities in non-Euclidean data such as mesh and point cloud, early 3D deep learning studies transformed these data into regular forms of Euclidean data to utilize them. This approach, however, cannot use memory efficiently and causes loses of essential information on objects. Thus, various approaches that can directly apply deep learning architecture to non-Euclidean 3D data have emerged. In this survey, we introduce various deep learning methods for mesh and point cloud data. After analyzing the operating principles of these methods designed for irregular data, we compare the performance of existing methods for shape classification and segmentation tasks.
As ship condition inspection technology has been developed, research on collecting, analyzing, and diagnosing condition information has become active. In ships, related research has been conducted, such as analyzing, detecting, and classifying major hull failures such as cracks and corrosion using 2D and 3D data information. However, for geometric deformation such as indents and bulges, 2D data has limitations in detection, so 3D data is needed to utilize spatial feature information. In this study, we aim to detect hull structural deformation positions. It builds a specimen based on actual hull structure deformation and acquires a point cloud from a model scanned with a 3D scanner. In the obtained point cloud, deformation(outliers) is found with a combination of RANSAC algorithms that find the best matching model in the Octree data structure and dataset.
최근 스마트 시티, 디지털 트윈 등에 실제 3차원 좌표를 취득할 수 있는 이점에 따라 포인트 클라우드를 이용한 모델 생성에 관한 연구가 늘어나고 있으며, 건물 형상 및 텍스처의 수정이 용이한 솔리드 모델에 대한 요구가 늘어나고 있다. 이에 따라 본 논문에서는 포인트 클라우드 데이터를 기반으로 군집형 솔리드 건물 모델을 생성하는 방법을 제안한다. 제안하는 방법은 총 다섯단계로 구성된다. 첫 단계에서는 포인트 클라우드의 평면성 분석을 통해 지면을 제거하였다. 두 번째 단계에서는 지면이 제거된 포인트 클라우드에서 건물 영역을 추출하였다. 세 번째 단계에서는 건물의 세부 구조물 영역을 추출하였다. 네 번째 단계에서는 추출된 영역에 3차원 좌표정보가 부여된 3차원 건물 모델의 형상을 생성하였다. 마지막 단계에서는 건물 모델 형상에 텍스처를 부여하여 3차원 건물 솔리드 모델을 생성하였다. 제안하는 방법의 검증을 위하여 상용 소프트웨어를 이용해 무인항공기 영상으로부터 포인트 클라우드를 추출하여 실험하였다. 그 결과, 포인트 클라우드 내에 존재하는 일정 높이 이상의 모든 건물에 대하여 포인트 클라우드 대비 위치오차 1 m 내외의 3차원 건물 형상을 생성하고, 원본 영상 해상도 대비 2배 이내의 해상도를 갖는 텍스처링이 수행된 3차원 모델이 생성되는 것을 확인하였다.
본 논문에서는 3차원 점집합으로부터 3차원 메시를 생성하는 효율적인 기법을 소개한다. 대표적인 3차원 삼각화 방법으로 3차원 딜로니 삼각화 기법이 있으나 물체의 표면만을 고려한 메시 생성을 위한 방법으로 비효율적인 측면이 있다. 본 논문에서는 적은 계산량으로 물체의 표면 메시를 생성하는 기법을 소개한다. 물체의 각 영역을 분할하고 각 영역에 대해서 2차원 딜로니 삼각화를 적용하여 3차원 메시 구조를 얻는다. 3차원 점 집합에 대해 OBB(Oriented Bounding Box)를 계산하고 이를 기준으로 점 집합을 여러 분할 영역으로 나누고 각 부분 점 집합에 대해서 2차원 딜로니 삼각화를 실시한다. 각 2차원 삼각화 결과는 점전적으로 전체 메시에 병합된다. 또한 병합된 메시에서 잘못된 에지의 연결을 제거함으로써 객체의 삼각 분할 결과를 향상시킨다. 제안된 메시 생성 기법은 다양한 영상 기반 모델링 응용에서 효과적으로 적용될 수 있다.
포인트 클라우드 콘텐츠는 3차원 포인트로 실제 객체를 나타내는 몰입형 콘텐츠이다. 포인트 클라우드 데이터를 획득하거나 포인트 클라우드 데이터를 인코딩 및 디코딩하는 과정에서 포인트 클라우드 콘텐츠의 해상도가 저하될 수 있다. 본 논문에서는 프레임 간 정합을 통해 순차적으로 포인트 클라우드 콘텐츠의 해상도를 점진적으로 향상시키는 방법을 제안한다. 포인트 클라우드 데이터를 정합하기 위해 ICP(Iterative Closest Point) 알고리즘이 일반적으로 사용된다. 기존 ICP 알고리즘은 강체를 변환할 수 있지만 포인트 클라우드 콘텐츠와 같이 로컬에서 서로 다른 방향으로 모션 벡터를 갖는 비 강체에 대해서는 변환이 불가능하다는 단점이 있다. 현재 프레임의 포인트 클라우드와 이전 프레임 사이의 포인트를 쌍을 만들고 만들어진 쌍의 움직임양을 계산하여 보상해주는 방법으로 기존 ICP 정합에서의 한계를 극복하였다. 이러한 방식으로 프레임 사이에 포인트를 정합하는 과정을 통해 기하학적 움직임이 있는 포인트 클라우드 콘텐츠의 해상도가 향상됨을 보였다.
Presented in the paper is an algorithm to generate a section curve by slicing a point cloud including tens of thousands of points. Although, there have been previous research results on the slicing problem, they are quite sensitive on the density variations of the point cloud, as well as on the local noise in the point cloud. To relive the difficulties, three technological requirements are identified; 1) dominant point sampling, 2) avoiding local vibration, and 3) robustness on the density changes. To satisfy these requirements, we propose a new slicing algorithm which is based on a node-sphere diagram. The algorithm has been implemented and tested with various examples.
3차원 포인트 클라우드 의미적 분할은 각 포인트별로 해당 포인트가 속한 물체나 영역의 분류 레이블을 예측함으로써, 포인트 클라우드를 서로 다른 물체들이나 영역들로 나누는 컴퓨터 비전 작업이다. 기존의 3차원 의미적 분할 모델들은 RGB 영상들에서 추출하는 2차원 시각적 특징과 포인트 클라우드에서 추출하는 3차원 기하학적 특징의 특성을 충분히 고려한 특징 융합을 수행하지 못한다는 한계가 있다. 따라서, 본 논문에서는 2차원-3차원 멀티-모달 특징을 이용하는 새로운 3차원 의미적 분할 모델 MMCA-Net을 제안한다. 제안 모델은 중기 융합 전략과 멀티-모달 교차 주의집중 기반의 융합 연산을 적용함으로써, 이질적인 2차원 시각적 특징과 3차원 기하학적 특징을 효과적으로 융합한다. 또한 3차원 기하학적 인코더로 PTv2를 채용함으로써, 포인트들이 비-정규적으로 분포한 입력 포인트 클라우드로부터 맥락정보가 풍부한 3차원 기하학적 특징을 추출해낸다. 본 논문에서는 제안 모델의 성능을 분석하기 위해 벤치마크 데이터 집합인 ScanNetv2을 이용한 다양한 정량 및 정성 실험들을 진행하였다. 성능 척도 mIoU 측면에서 제안 모델은 3차원 기하학적 특징만을 이용하는 PTv2 모델에 비해 9.2%의 성능 향상을, 2차원-3차원 멀티-모달 특징을 사용하는 MVPNet 모델에 비해 12.12%의 성능 향상을 보였다. 이를 통해 본 논문에서 제안한 모델의 효과와 유용성을 입증하였다.
최근 군사적 목적으로 제작된 드론의 활용이 일반적인 용도로 그 사용처가 확대되고 있다. 콘텐츠 제작에 있어 드론이 활발하게 사용되고 있는데 특히 영상 촬영 분야에서 가장 눈에 띄게 나타나고 있다. 본 논문에서는 드론에서 촬영된 2차원 영상 데이터를 이용하여 포인트 클라우드 및 3차원 모델을 생성하고 메쉬 데이터를 3차원 라이브러리로 모듈화한 플랫폼을 개발한다. 이를 위하여 먼저 드론을 이용하여 2차원 영상 데이터를 취득하고, 취득된 2차원 영상 데이터를 기반으로 하여 포인트 클라우드를 생성하고, 추출된 포인트 클라우드를 3차원 메쉬 데이터로 변환한 후 변환되어진 3차원 데이터를 다양한 분야에 활용될 수 있도록 서비스 라이브러리 플랫폼을 개발한다. 본 논문에서 개발된 플랫폼은 촬영된 데이터를 3차원 데이터로 변환하여 영화, 드라마, 다큐멘터리 등의 제작 시에 특수 영상을 위한 실제 세트 제작 비용 절감 및 시간을 단축 할 수 있고, 실감 미디어 및 특수 영상, 전시 영상 분야의 디지털 콘텐츠 제작 전문 인력 창출에 기여 할 수 있다.
Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.
This study concerns an advanced 3D surface reconstruction method that the vertices of surface model can be completely matched to the unstructured point cloud measured from arbitrary complex shapes. The concept of bounding voxel model is introduced to generate the mesh model well-representing the geometrical and topological characteristics of point cloud. In the reconstruction processes, the application of various methodologies such as shrink-wrapping, mesh simplification, local subdivision surface fitting, insertion of is isolated points, mesh optimization and so on, are required. Especially, the effectiveness, rapidity and reliability of the proposed surface reconstruction method are demonstrated by the simulation results for the geometrically and topologically complex shapes like dragon and human mouth.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.