KSII Transactions on Internet and Information Systems (TIIS)
/
제13권6호
/
pp.3108-3120
/
2019
Point cloud is widely used in 3D applications due to the recent advancement of 3D data acquisition technology. Polygonal mesh-based compression has been dominant since it can replace many points sharing a surface with a set of vertices with mesh structure. Recent point cloud-based applications demand more point-based interactivity, which makes point cloud compression (PCC) becomes more attractive than 3D mesh compression. Interestingly, an exploration activity has been started to explore the feasibility of PCC standard in MPEG. In this paper, a new color attribute compression method is presented for point cloud data. The proposed method utilizes the spatial redundancy among color attribute data to construct a color palette. The color palette is constructed by using K-means clustering method and each color data in point cloud is represented by the index of its similar color in palette. To further improve the compression efficiency, the spatial redundancy between the indices of neighboring colors is also removed by marking them using a flag bit. Experimental results show that the proposed method achieves a better improvement of RD performance compared with that of the MPEG PCC reference software.
본 논문에서는 dense point cloud 의 평면영역에서 발생하는 bump 을 줄이기 위한 방법을 제시한다. 이상적인 point cloud 의 평면영역에서 점의 위치의 차이가 균일하다는 특성을 이용하여 점의 위치를 재구성하는 방식을 제시한다. 또한 더 작은 개수의 점으로 물체를 나타낼 수 있으며, 더 작은 잡음이 나타나는 sparse point cloud 의 성질을 고려하여 dense point cloud 의 점의 개수 또한 감소시킨다. 따라서 제안하는 알고리즘을 적용하여 dense point cloud 의 잡음을 감소시키면 평면영역의 bump 감소 및 점 개수의 감소를 통한 데이터 전송 시 더 작은 크기로 보낼 수 있다.
Recently, research and development to revitalize smart construction are being actively carried out. Accordingly, 3D mapping technology that digitizes construction site is drawing attention. To create a 3D digital map for construction site a point cloud generation method based on LiDAR(Light detection and ranging) using MMS(Mobile mapping system) is mainly used. The purpose of this study is to analyze the accuracy of MMS LiDAR-based point cloud data. As a result, accuracy of MMS point cloud data was analyzed as dx = 0.048m, dy = 0.018m, dz = 0.045m on average. In future studies, accuracy comparison of point cloud data produced via UAV(Unmanned aerial vegicle) photogrammetry and MMS LiDAR should be studied.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권7호
/
pp.2585-2598
/
2015
Hand posture recognition has played a very important role in Human Computer Interaction (HCI) and Computer Vision (CV) for many years. The challenge arises mainly due to self-occlusions caused by the limited view of the camera. In this paper, a robust hand posture recognition approach based on 3D point cloud from two RGB-D sensors (Kinect) is proposed to make maximum use of 3D information from depth map. Through noise reduction and registering two point sets obtained satisfactory from two views as we designed, a multi-viewed hand posture point cloud with most 3D information can be acquired. Moreover, we utilize the accurate reconstruction and classify each point cloud by directly matching the normalized point set with the templates of different classes from dataset, which can reduce the training time and calculation. Experimental results based on posture dataset captured by Kinect sensors (from digit 1 to 10) demonstrate the effectiveness of the proposed method.
We present a method for transmitting 3D object information in real time in a telepresence system. Three-dimensional object information consists of a large amount of point cloud data, which requires high performance computing power and ultra-wideband network transmission environment to process and transmit such a large amount of data in real time. In this paper, multiple users can transmit object motion and facial expression information in real time even in small network bands by using GANs (Generative Adversarial Networks), a non-supervised learning machine learning algorithm, for real-time transmission of 3D point cloud data. In particular, we propose the creation of an object similar to the original using only the feature information of 3D objects using conditional GANs.
최근 하드웨어 성능뿐 아니라 영상 처리 기술의 발달로 인해 다양한 분야에서 사용자에게 자유로운 시야각과 입체감을 제공하는 3차원 포인트를 다루는 기술에 관한 연구를 지속하고 있다. 3차원 포인트를 표현하는 형식 중 포인트 클라우드 기술은 포인트를 정밀하게 획득/표현할 수 있다는 장점으로 인해 다양한 분야에서 주목받고 있다. 하지만 하나의 3차원 포인트 클라우드 콘텐츠를 표현하기 위해 수십, 수백만 개의 포인트가 필요하므로 기존의 2차원 콘텐츠보다 많은 양의 저장 공간을 요구한다는 단점이 존재한다. 이러한 이유로, 국제 표준화 기구인 MPEG (Moving Picture Experts Group)에서는 3차원 포인트 클라우드 콘텐츠를 효율적으로 압축 및 저장하고, 사용자에게 전송하는 방안에 대해 계속 연구를 진행 중이다. 본 논문에서는 MPEG-I (Immersive) 그룹에서 제안한 V-PCC(Video based Point Cloud Compression) 부호화기를 통해 생성된 V-PCC 비트스트림을 MMT (MPEG Media Transport) 표준에서 정의한 MPU (Media Processing Unit)로 구성하는 방안을 제안한다. 또한, MMT 표준에서 정의한 시그널링 메시지를 확장하여 3차원 포인트 클라우드 콘텐츠의 영역 선별적 전송 방안을 위한 파라미터와 사용자의 요구에 따라 선택적으로 품질 파라미터를 결정할 수 있도록 V-PCC에서 상정하는 품질 파라미터를 추가 정의한다. 마지막으로, 본 논문에서는 제안한 기술을 기반으로 검증 플랫폼의 설계/구현을 통해 결과를 확인한다.
As the capacity of the 3d scanner developed, the reverse engineering using the 3d scanner is emphasized in the construction industry to obtain the 3d geometric representation of buildings. However, big size of the indoor point cloud data acquired by the 3d scanner restricts the efficient process in the reverse engineering. In order to solve this inefficiency, several pre-processing methods simplifying and denoising the raw point cloud data by the rough standard are developed, but these non-standard methods can cause the inaccurate recognition and removal the key-points. This paper analyzes the correlation between the accuracy of wall recognition and the density of the data, thus proposes the proper method for the raw point cloud data. The result of this study could improve the efficiency of the data processing phase in the reverse engineering for indoor point cloud data.
건설, 의료, 컴퓨터 그래픽스, 도시공간 관리 등 다양한 분야에서 3차원 공간정보 모델이 이용되고 있다. 특히 측량 및 공간정보 분야에서는 최근 고품질의 3차원 공간정보와 실내공간정보에 대한 수요가 폭발적으로 증가하고 있으나, 현재 공간정보 데이터가 다양한 형식과 저장구조로 구성되어 관리되고 있어 저비용 고효율의 3차원 공간정보 서비스가 어려운 상황이다. 실제로 활용도 높은 3차원 모델을 구축하기 위한 기술은 관측과 처리에 고액의 비용이 발생하지만, 대부분의 수요처에서는 이러한 고비용의 공간정보 구축에 어려움을 느끼는 경우가 대부분이다. 따라서 본 연구에서는 저비용의 3D 공간정보 모델을 구축하기 위한 효율적인 방안을 제시하는 것을 목적으로 하였다. 현재의 3D 모델의 구축 방법 중 가장 효율적인 방법으로는 기존에 구축되어 있는 Point Cloud, UAV 관측영상 등의 원시데이터를 활용하여 비용을 절감시키는 방법이 있지만, 이는 관리하는 기관이 분리되어 있고 사용하기 위해 요청하는 절차가 복잡하여 활용에 제한이 있었다. 본 연구에서는 이를 해결하기 위해서 도로대장 관리 분야를 대상으로 3D 구축에 필요한 기반데이터를 통합하여 연계하고 관리 할 수 있는 통합관리 시스템 개발을 수행하였으며, 다양한 형태의 원시자료를 Point Cloud 형식으로 구성하여 도로대장 관리에 적용할 경우 6개의 주요 관리항목을 효과적 구축 및 관리할 수 있을 것으로 판단되었다.
Recently, point clouds are generated by capturing real space in 3D, and it is actively applied and serviced for performances, exhibitions, education, and training. These point cloud data require post-correction work to be used in virtual environments due to errors caused by the capture environment with sensors and cameras. In this paper, we propose an enhancement technique for 3D point cloud data by applying generative adversarial network(GAN). Thus, we performed an approach to regenerate point clouds as an input of GAN. Through our method presented in this paper, point clouds with a lot of noise is configured in the same shape as the real object and environment, enabling precise interaction with the reconstructed content.
Park, Suyeul;Kim, Younggun;Choi, Yungjun;Kim, Seok
국제학술발표논문집
/
The 9th International Conference on Construction Engineering and Project Management
/
pp.1100-1105
/
2022
Denoising, registering, and detecting changes of 3D digital map are generally conducted by skilled technicians, which leads to inefficiency and the intervention of individual judgment. The manual post-processing for analyzing 3D point cloud data of construction sites requires a long time and sufficient resources. This study develops automation technology for analyzing 3D point cloud data for construction sites. Scanned data are automatically denoised, and the denoised data are stored in a specific storage. The stored data set is automatically registrated when the data set to be registrated is prepared. In addition, regions with non-homogeneous densities will be converted into homogeneous data. The change detection function is developed to automatically analyze the degree of terrain change occurred between time series data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.