• 제목/요약/키워드: 3d point cloud

검색결과 396건 처리시간 0.022초

Palette-based Color Attribute Compression for Point Cloud Data

  • Cui, Li;Jang, Euee S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.3108-3120
    • /
    • 2019
  • Point cloud is widely used in 3D applications due to the recent advancement of 3D data acquisition technology. Polygonal mesh-based compression has been dominant since it can replace many points sharing a surface with a set of vertices with mesh structure. Recent point cloud-based applications demand more point-based interactivity, which makes point cloud compression (PCC) becomes more attractive than 3D mesh compression. Interestingly, an exploration activity has been started to explore the feasibility of PCC standard in MPEG. In this paper, a new color attribute compression method is presented for point cloud data. The proposed method utilizes the spatial redundancy among color attribute data to construct a color palette. The color palette is constructed by using K-means clustering method and each color data in point cloud is represented by the index of its similar color in palette. To further improve the compression efficiency, the spatial redundancy between the indices of neighboring colors is also removed by marking them using a flag bit. Experimental results show that the proposed method achieves a better improvement of RD performance compared with that of the MPEG PCC reference software.

3D Mesh 의 bump 를 감소시키기 위한 Point Cloud 제거 및 재배열 알고리즘 (Point cloud removing and rearrangement for reducing bump on 3D mesh)

  • 차상국;한종기
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.266-268
    • /
    • 2020
  • 본 논문에서는 dense point cloud 의 평면영역에서 발생하는 bump 을 줄이기 위한 방법을 제시한다. 이상적인 point cloud 의 평면영역에서 점의 위치의 차이가 균일하다는 특성을 이용하여 점의 위치를 재구성하는 방식을 제시한다. 또한 더 작은 개수의 점으로 물체를 나타낼 수 있으며, 더 작은 잡음이 나타나는 sparse point cloud 의 성질을 고려하여 dense point cloud 의 점의 개수 또한 감소시킨다. 따라서 제안하는 알고리즘을 적용하여 dense point cloud 의 잡음을 감소시키면 평면영역의 bump 감소 및 점 개수의 감소를 통한 데이터 전송 시 더 작은 크기로 보낼 수 있다.

  • PDF

건설현장 MMS 라이다 기반 점군 데이터의 정확도 분석 (Accuracy Analysis of Point Cloud Data Produced Via Mobile Mapping System LiDAR in Construction Site)

  • 박재우;염동준
    • 한국산업융합학회 논문집
    • /
    • 제25권3호
    • /
    • pp.397-406
    • /
    • 2022
  • Recently, research and development to revitalize smart construction are being actively carried out. Accordingly, 3D mapping technology that digitizes construction site is drawing attention. To create a 3D digital map for construction site a point cloud generation method based on LiDAR(Light detection and ranging) using MMS(Mobile mapping system) is mainly used. The purpose of this study is to analyze the accuracy of MMS LiDAR-based point cloud data. As a result, accuracy of MMS point cloud data was analyzed as dx = 0.048m, dy = 0.018m, dz = 0.045m on average. In future studies, accuracy comparison of point cloud data produced via UAV(Unmanned aerial vegicle) photogrammetry and MMS LiDAR should be studied.

MultiView-Based Hand Posture Recognition Method Based on Point Cloud

  • Xu, Wenkai;Lee, Ick-Soo;Lee, Suk-Kwan;Lu, Bo;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2585-2598
    • /
    • 2015
  • Hand posture recognition has played a very important role in Human Computer Interaction (HCI) and Computer Vision (CV) for many years. The challenge arises mainly due to self-occlusions caused by the limited view of the camera. In this paper, a robust hand posture recognition approach based on 3D point cloud from two RGB-D sensors (Kinect) is proposed to make maximum use of 3D information from depth map. Through noise reduction and registering two point sets obtained satisfactory from two views as we designed, a multi-viewed hand posture point cloud with most 3D information can be acquired. Moreover, we utilize the accurate reconstruction and classify each point cloud by directly matching the normalized point set with the templates of different classes from dataset, which can reduce the training time and calculation. Experimental results based on posture dataset captured by Kinect sensors (from digit 1 to 10) demonstrate the effectiveness of the proposed method.

cGANs 기반 3D 포인트 클라우드 데이터의 실시간 전송 기법 (Real-time transmission of 3G point cloud data based on cGANs)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • 한국정보통신학회논문지
    • /
    • 제23권11호
    • /
    • pp.1482-1484
    • /
    • 2019
  • We present a method for transmitting 3D object information in real time in a telepresence system. Three-dimensional object information consists of a large amount of point cloud data, which requires high performance computing power and ultra-wideband network transmission environment to process and transmit such a large amount of data in real time. In this paper, multiple users can transmit object motion and facial expression information in real time even in small network bands by using GANs (Generative Adversarial Networks), a non-supervised learning machine learning algorithm, for real-time transmission of 3D point cloud data. In particular, we propose the creation of an object similar to the original using only the feature information of 3D objects using conditional GANs.

MMT 기반 3차원 포인트 클라우드 콘텐츠의 영역 선별적 전송 방안 (Region Selective Transmission Method of MMT based 3D Point Cloud Content)

  • 김두환;김준식;김규헌
    • 방송공학회논문지
    • /
    • 제25권1호
    • /
    • pp.25-35
    • /
    • 2020
  • 최근 하드웨어 성능뿐 아니라 영상 처리 기술의 발달로 인해 다양한 분야에서 사용자에게 자유로운 시야각과 입체감을 제공하는 3차원 포인트를 다루는 기술에 관한 연구를 지속하고 있다. 3차원 포인트를 표현하는 형식 중 포인트 클라우드 기술은 포인트를 정밀하게 획득/표현할 수 있다는 장점으로 인해 다양한 분야에서 주목받고 있다. 하지만 하나의 3차원 포인트 클라우드 콘텐츠를 표현하기 위해 수십, 수백만 개의 포인트가 필요하므로 기존의 2차원 콘텐츠보다 많은 양의 저장 공간을 요구한다는 단점이 존재한다. 이러한 이유로, 국제 표준화 기구인 MPEG (Moving Picture Experts Group)에서는 3차원 포인트 클라우드 콘텐츠를 효율적으로 압축 및 저장하고, 사용자에게 전송하는 방안에 대해 계속 연구를 진행 중이다. 본 논문에서는 MPEG-I (Immersive) 그룹에서 제안한 V-PCC(Video based Point Cloud Compression) 부호화기를 통해 생성된 V-PCC 비트스트림을 MMT (MPEG Media Transport) 표준에서 정의한 MPU (Media Processing Unit)로 구성하는 방안을 제안한다. 또한, MMT 표준에서 정의한 시그널링 메시지를 확장하여 3차원 포인트 클라우드 콘텐츠의 영역 선별적 전송 방안을 위한 파라미터와 사용자의 요구에 따라 선택적으로 품질 파라미터를 결정할 수 있도록 V-PCC에서 상정하는 품질 파라미터를 추가 정의한다. 마지막으로, 본 논문에서는 제안한 기술을 기반으로 검증 플랫폼의 설계/구현을 통해 결과를 확인한다.

실내 포인트 클라우드 데이터 Downsampling의 Trade-off 분석을 통한 기초 연구 (A Basic Study on Trade-off Analysis of Downsampling for Indoor Point Cloud Data)

  • 강남우;오상민;류민우;정용일;조훈희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.40-41
    • /
    • 2020
  • As the capacity of the 3d scanner developed, the reverse engineering using the 3d scanner is emphasized in the construction industry to obtain the 3d geometric representation of buildings. However, big size of the indoor point cloud data acquired by the 3d scanner restricts the efficient process in the reverse engineering. In order to solve this inefficiency, several pre-processing methods simplifying and denoising the raw point cloud data by the rough standard are developed, but these non-standard methods can cause the inaccurate recognition and removal the key-points. This paper analyzes the correlation between the accuracy of wall recognition and the density of the data, thus proposes the proper method for the raw point cloud data. The result of this study could improve the efficiency of the data processing phase in the reverse engineering for indoor point cloud data.

  • PDF

Point Cloud 기반의 고해상도 원시데이터 연계 및 관리시스템 개발 (Development of Linking & Management System for High-Resolution Raw Geo-spatial Data based on the Point Cloud DB)

  • 김재학;이동하
    • 한국지리정보학회지
    • /
    • 제21권4호
    • /
    • pp.132-144
    • /
    • 2018
  • 건설, 의료, 컴퓨터 그래픽스, 도시공간 관리 등 다양한 분야에서 3차원 공간정보 모델이 이용되고 있다. 특히 측량 및 공간정보 분야에서는 최근 고품질의 3차원 공간정보와 실내공간정보에 대한 수요가 폭발적으로 증가하고 있으나, 현재 공간정보 데이터가 다양한 형식과 저장구조로 구성되어 관리되고 있어 저비용 고효율의 3차원 공간정보 서비스가 어려운 상황이다. 실제로 활용도 높은 3차원 모델을 구축하기 위한 기술은 관측과 처리에 고액의 비용이 발생하지만, 대부분의 수요처에서는 이러한 고비용의 공간정보 구축에 어려움을 느끼는 경우가 대부분이다. 따라서 본 연구에서는 저비용의 3D 공간정보 모델을 구축하기 위한 효율적인 방안을 제시하는 것을 목적으로 하였다. 현재의 3D 모델의 구축 방법 중 가장 효율적인 방법으로는 기존에 구축되어 있는 Point Cloud, UAV 관측영상 등의 원시데이터를 활용하여 비용을 절감시키는 방법이 있지만, 이는 관리하는 기관이 분리되어 있고 사용하기 위해 요청하는 절차가 복잡하여 활용에 제한이 있었다. 본 연구에서는 이를 해결하기 위해서 도로대장 관리 분야를 대상으로 3D 구축에 필요한 기반데이터를 통합하여 연계하고 관리 할 수 있는 통합관리 시스템 개발을 수행하였으며, 다양한 형태의 원시자료를 Point Cloud 형식으로 구성하여 도로대장 관리에 적용할 경우 6개의 주요 관리항목을 효과적 구축 및 관리할 수 있을 것으로 판단되었다.

생성적 적대 신경망 기반 3차원 포인트 클라우드 향상 기법 (3D Point Cloud Enhancement based on Generative Adversarial Network)

  • Moon, HyungDo;Kang, Hoonjong;Jo, Dongsik
    • 한국정보통신학회논문지
    • /
    • 제25권10호
    • /
    • pp.1452-1455
    • /
    • 2021
  • Recently, point clouds are generated by capturing real space in 3D, and it is actively applied and serviced for performances, exhibitions, education, and training. These point cloud data require post-correction work to be used in virtual environments due to errors caused by the capture environment with sensors and cameras. In this paper, we propose an enhancement technique for 3D point cloud data by applying generative adversarial network(GAN). Thus, we performed an approach to regenerate point clouds as an input of GAN. Through our method presented in this paper, point clouds with a lot of noise is configured in the same shape as the real object and environment, enabling precise interaction with the reconstructed content.

Automation technology for analyzing 3D point cloud data of construction sites

  • Park, Suyeul;Kim, Younggun;Choi, Yungjun;Kim, Seok
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1100-1105
    • /
    • 2022
  • Denoising, registering, and detecting changes of 3D digital map are generally conducted by skilled technicians, which leads to inefficiency and the intervention of individual judgment. The manual post-processing for analyzing 3D point cloud data of construction sites requires a long time and sufficient resources. This study develops automation technology for analyzing 3D point cloud data for construction sites. Scanned data are automatically denoised, and the denoised data are stored in a specific storage. The stored data set is automatically registrated when the data set to be registrated is prepared. In addition, regions with non-homogeneous densities will be converted into homogeneous data. The change detection function is developed to automatically analyze the degree of terrain change occurred between time series data.

  • PDF