• Title/Summary/Keyword: 3d depth image

Search Result 615, Processing Time 0.038 seconds

3-D CT Image Study of Effect of Glenoid Fossa on Menton Deviation (하악 관절와의 형태가 하악 이부편위에 미치는 영향에 관한 3차원 영상 연구)

  • Cho, Jin-Hyoung;Lee, Kyung-Min;Park, Hong-Ju;Hwang, Hyeon-Shik
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.4
    • /
    • pp.337-345
    • /
    • 2011
  • Purpose: The purpose of this study was to define the relation of the degree of menton deviation and 3-D CT (computerized tomography) measurements of the glenoid fossa and the mandible, which are considered to have an influence on menton deviation. Methods: The CT images were obtained in 60 adults and these were transmitted to a computer and reconstructed using computer software. According to the degree of the menton deviation, which was measured on the posteroanterior cephalogram, the subjects were divided into the menton deviated group (30 adults) and the symmetry group (30 adults). A total of 11 measurements that might have an effect on menton deviation were determined and these were measured in the right and left sides using the function of 3-D measurement in the computer program. The 11 measurements consist of 6 measurements in the glenoid fossa (vertical position of the glenoid fossa and articular eminence, the sagittal position of the glenoid fossa and articular eminence, the depth of the glenoid fossa, and the anterior angle of the glenoid fossa), and 5 measurements in the mandible (ramus length, frontal ramal inclination, lateral ramal inclination, body length, body height). Results: The comparison of the differences between the menton deviated and symmetry groups and correlation analysis on the degree of menton deviation were carried out. The results of comparison of the right and the left difference between the menton deviated and symmetry groups showed that the vertical position and depth of the glenoid fossa were significantly increased in the menton deviated group. Conclusion: The results of the present study show that consideration of the shape and position of the glenoid fossa is necessary for making the diagnosis and administering proper treatment in facial asymmetry patients and especially growing patients.

Human Activity Recognition Using Spatiotemporal 3-D Body Joint Features with Hidden Markov Models

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2767-2780
    • /
    • 2016
  • Video-based human-activity recognition has become increasingly popular due to the prominent corresponding applications in a variety of fields such as computer vision, image processing, smart-home healthcare, and human-computer interactions. The essential goals of a video-based activity-recognition system include the provision of behavior-based information to enable functionality that proactively assists a person with his/her tasks. The target of this work is the development of a novel approach for human-activity recognition, whereby human-body-joint features that are extracted from depth videos are used. From silhouette images taken at every depth, the direction and magnitude features are first obtained from each connected body-joint pair so that they can be augmented later with motion direction, as well as with the magnitude features of each joint in the next frame. A generalized discriminant analysis (GDA) is applied to make the spatiotemporal features more robust, followed by the feeding of the time-sequence features into a Hidden Markov Model (HMM) for the training of each activity. Lastly, all of the trained-activity HMMs are used for depth-video activity recognition.

Depth Video Post-processing for Immersive Teleconference (원격 영상회의 시스템을 위한 깊이 영상 후처리 기술)

  • Lee, Sang-Beom;Yang, Seung-Jun;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.497-502
    • /
    • 2012
  • In this paper, we present an immersive videoconferencing system that enables gaze correction between users in the internet protocol TV (IPTV) environment. The proposed system synthesizes the gaze corrected images using the depth estimation and the virtual view synthesis algorithms as one of the most important techniques of 3D video system. The conventional processes, however, causes several problems, especially temporal inconsistency of a depth video. This problem leads to flickering artifacts discomforting viewers. Therefore, in order to reduce the temporal inconsistency problem, we exploit the joint bilateral filter which is extended to the temporal domain. In addition, we apply an outlier reduction operation in the temporal domain. From experimental results, we have verified that the proposed system is sufficient to generate the natural gaze-corrected image and realize immersive videoconferencing.

Geometry of the Model Purse Seine in Relation to Enclosed Volume during Hauling Operation

  • Kim Yong-Hae
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.156-162
    • /
    • 2000
  • Model experiments for a purse seine were carried out in order to measure the geometry of net shape and to estimate an enclosed volume by using 1177 scale model purse seine of 12.62m float line from an offshore mackerel purse seine. A model purse seine was set from a net box of shooting equipments and then pursing and hauling net by hauling equipment. The 3- D geometry shape of the purse seine net during hauling operation was measured by video image processing and tension of purse line by load cell. The 3-D geometry of the model purse seine during hauling operation could be represented with variables such as a ratio of shooting diameter or maximum net depth and a ratio of hauling operation time. Horizontal shapes of float line and lead line were varied from a circle after shooting to an ellipse with pursing and hauling. Projected lateral shape of purse line was observed and formulated as a shape of a water drop. The cross sectional shapes of curved net from two directions were varied such as sine function or polynomial curves. Therefore, enclosed volume of a purse seine in relation to fish school behaviour can be approximated using two main variables from relevant equations.

  • PDF

Stereo Vision System Using Relative Stereo Disparity with Subpixel Resolution

  • Kim, Chi-Yen;Ahn, Cheol-Ki;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.407-407
    • /
    • 2000
  • For acquisition of 3-Dimensional information in real space, stereo vision system is suitable. In the stereo system, 3D real world position is derived from translation of coordinates between cameras and world. Thus, to use stereo vision, it is needed to construct a precise system which provides kinematically precise translation between camera and world coordinate, in spite of intricacy and hardness. So much cost and time should be spent to build the system. In this paper, facilely to solve previous problem, a method which can easily obtain 3D informations using reference objects and RSD(Relative Stereo Disparity) is proposed. Instead of direct computation of position with translation of coordinates, only relative stereo disparity in stereo pair of image is used to find the reference depth of objects, and real 3D position is computed with initial condition of reference objects. In computation, subpixel resolution is involved to find the display for accuracy. To find the RSD, corresponding points are calculated in subpixel resolution. So the result in experiemnt will be shown that subpixel resolution is more accurate than 1 pixel resolution.

  • PDF

Application of Stereo Vision for Shape Measurement of Free-form Surface using Shape-from-shading (자유곡면의 형상 측정에서 shape-from-shading을 접목한 스테레오 비전의 적용)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.134-140
    • /
    • 2017
  • Shape-from-shading (SFS) or stereo vision algorithms can be utilized to measure the shape of an object with imaging techniques for effective sensing in non-contact measurements. SFS algorithms could reconstruct the 3D information from a 2D image data, offering relatively comprehensive information. Meanwhile, a stereo vision algorithm needs several feature points or lines to extract 3D information from two 2D images. However, to measure the size of an object with a freeform surface, the two algorithms need some additional information, such as boundary conditions and grids, respectively. In this study, a stereo vision scheme using the depth information obtained by shape-from-shading as patterns was proposed to measure the size of an object with a freeform surface. The feasibility of the scheme was proved with an experiment where the images of an object were acquired by a CCD camera at two positions, then processed by SFS, and finally by stereo matching. The experimental results revealed that the proposed scheme could recognize the size and shape of freeform surface fairly well.

Development of line-scanning two-photon microscopy based on spatial and temporal focusing for tryptophan based auto fluorescence imaging (고속 트립토판 자가형광 이미징을 위한 시공간적 집중 기반의 라인 스캐닝 이광자 현미경 개발)

  • Lee, Jun Ho;Nam, Hyo Seok;Kim, Ki Hean
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.41-45
    • /
    • 2013
  • Two-photon microscopy (TPM) is minimally-invasive 3D fluorescence microscopy based on nonlinear excitation, and TPM can visualize cellular structures based on auto-fluorescence. Line-scanning TPM is one of high-speed TPM methods without sacrificing the image resolution by using spatial and temporal focusing. In this paper, we developed line-scanning TPM based on spatial and temporal focusing for auto-fluorescence imaging by exciting the tryptophan. Laser source for this system was an optical parametric oscillator (OPO) and it made near 570 nm femtosecond pulse laser. It had 200fs pulse width and 1.72 nm bandwidth, so that the achievable depth resolution was 2.41um and field of view (FOV) is 10.8um. From the characterization, our system has 3.0 um depth resolution and 12.3 um FOV. We visualized fixed leukocyte cell sample and compared with point scanning system.

Depth Map Processing for Improving Stereoscopic Image and CGH (입체영상 및 CGH 화질 개선을 위한 깊이맵 처리)

  • Gil, Jong In;Kim, Manbae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.27-29
    • /
    • 2010
  • 깊이데이터는 CG 또는 실사 영상에서 획득되는데 입체 영상 분야에서 활용도가 높다. 예를 들어 2D영상의 3D화질 개선, 입체영상의 입체감 개선 등의 활용이 되고 있다. 본 논문에서는 이러한 추세에 맞추어 홀로그램을 생성하는 입력 데이터의 전처리과정으로 통하여 CGH 홀로그램을 개선하는 영상처리 기술을 제안한다. 입력 데이터의 전처리를 통해 생성된 홀로그램 영상의 화질 개선을 제안하고, 실험을 통해 제안 방법의 우수성을 보여준다.

  • PDF

Interactive Haptic Deformation and Material Property Modeling Algorithm (인터랙티브 햅틱 변형 및 재질감 모델링 알고리즘)

  • Lee, Beom-Chan;Kim, Jong-Phil;Park, Hye-Shin;Ryu, Je-Ha
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1-7
    • /
    • 2007
  • 본 논문은 3차원 스캐너로 획득된 실제 얼굴 데이터를 햅틱 상호작용을 통해 직접 변형하고 재질감을 모델링 하는 알고리즘을 제안한다. 제안된 알고리즘은 그래픽 하드웨어 기반의 햅틱 렌더링 알고리즘을 기반으로 획득된 2.5D 얼굴 데이터를 mass-spring 모델을 적용하여 변형하고 얼굴의 재질감(탄성, 마찰, 거칠기) 정보를 모델링 하는 것이다. 햅틱 장치를 이용한 변형알고리즘은 변형 시 효율적인 변형 영역 탐색을 위하여 공간 분할방법인 k-d 트리 구조를 이용하여 최근방 탐색 알고리즘을 구현하였으며, 사실적인 힘 계산을 위하여 각 포인트 마다 mass-spring 모델을 적용하여 반력 연산 및 물체의 변형을 수행하였다. 아울러 재질감을 모델링 하기 위해 깊이 이미지 기반 표현(Depth Image Based Representation, DIBR)을 이용하여 가상 물체의 거칠기, 탄성, 및 마찰을 편집할 수 있는 방법론을 제시하고, 편집된 재질감을 직접 물체의 표면에 적용하여 렌더링 하는 알고리즘을 제안한다.

  • PDF

2-D Modeling of Electromagnetic Waves for the Probing of Concrete (콘크리트 내부 탐사를 위한 전자기파의 2차원 모델링)

  • 조윤범;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.18-23
    • /
    • 2000
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. Three concrete specimens with a 19.1 mm rebar embedded at 40 mm, 60 mm, and 80 mm depth are modeled in 3-dimension. As results, 2-D image processing scheme of modeling data has been developed and applied to the imaging of steel bars inside concrete.

  • PDF