• Title/Summary/Keyword: 3Y-$ZrO_2$

Search Result 1,705, Processing Time 0.03 seconds

R-Curve Behavior of Particulate Composites of ${Al_2}{O_3}$ Containing SiC and $ZrO_2$: I. Experiment (SiC와 $ZrO_2$를 함유하는 ${Al_2}{O_3}$ 입자복합체의 균열저항거동 : I. 실험)

  • 박관수;이승환;이재형
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.359-367
    • /
    • 2000
  • Particulate composites of Al2O3/SiC, Al2O3/ZrO2 and Al2O3/ZrO2/SiC have been fabricated to investigate their R-curve behaviors and toughening mechanisms. Al2O3 containing 30 vol% SiC particles of 3${\mu}{\textrm}{m}$ showed rising R-curve behavior owing to the strong crack bridging by SiC particles. The fracture toughness reached 9.1 MPa {{{{ SQRT {m} }} at the crack length of 1000${\mu}{\textrm}{m}$. On the other hand, ZrO2-toughened Al2O3 had a high flat R-curve since it rose steeply in the short crack region due to the well known transformation toughening. For Al2O3/ZrO2/SiC composites, the R-curve behavior was similar to that of Al2O3/SiC but with slightly higher toughness. The SiC particles in this composite decreased the amount of transformable tetragonal phase to reduce the effect of transformation toughening by 50%. It was also found that the fracture toughness of this composite with two different toughening mechanisms was markedly lower than that estimated by the simple addition of two contributions.

  • PDF

High-Temperature Degradation of Hot-Pressed $t-ZrO_2$ Co-doped with $Y_2O_3$ and $Nb_2O_5$ (Hot-press법으로 제조된 $Y_2O_3$$Nb_2O_5$가 첨가된 정방정 ZrO2의 고온열화)

  • 이득용;김대준;조경식
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.915-920
    • /
    • 1997
  • Tetragonal ZrO2 polycrystal (TZP), consisted of 90.24 mol% ZrO2-5.31 mol% Y2O3-4.45 mol% Nb2O5, were prepared using hot-press and mechanical properties and high-temperature degradation were investigated. The specimen, hot-pressed for 1 h at 140$0^{\circ}C$ in Ar atmosphere, exhibited flexural strength of 1010 MPa and fracture toughness of 7.5 MPam1/2 and experienced no low-temperature degradation below 40$0^{\circ}C$. However, as aged for 100h at temperatures higher than 40$0^{\circ}C$, TZP was suffered by high-temperature degradation due to an extensive cavitation caused by the oxidation of carbon. XPS observation revealed that the carbon incorporated in TZPs during hot-pressing exists as either an ether-type CO or a carbonyl-type C=O. Despite of the high-temperature degradation of t-ZrO2 co-doped with Y2O3 and Nb2O5, its flexural strength and fracture toughness were superior to those of the commercial 3 mol% Y2O3-TZP hot-pressed under the identical condition as determined before and after the aging treatments.

  • PDF

Loss of Li2O Caused by ZrO2 During the Electrochemical Reduction of ZrO2 in Li2O-LiCl Molten Salt (Li2O-LiCl 용융염을 이용한 ZrO2의 전기화학적 환원과정에서 발생하는 Li2O의 손실)

  • Park, Wooshin;Hur, Jin-Mok;Choi, Eun-Young;Kim, Jong-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.229-236
    • /
    • 2012
  • A molten salt technology using $Li_2O$-LiCl has been extensively investigated to recover uranium metal from spent fuels in the field of nuclear energy. In the reduction process, it is an important point to maintain the concentration of $Li_2O$. $ZrO_2$ is inevitably contained in the spent fuels because Zr is one of the main components of fuel rod hulls. Therefore, the fate of $ZrO_2$ in $Li_2O$-LiCl molten salt has been investigated. It was found that $Li_2ZrO_3$ and $Li_4ZrO_4$ were formed chemically and electrochemically and they were not reduced to Zr. The recycling of $Li_2O$ is the key mechanism ruling the total reaction in the electrolytic reduction process. However, $ZrO_2$ will have a role as a $Li_2O$ sink.

Preparation and Characterization of Porous Low Reflective Coating Films for $SiO_2.ZrO_2$ System by Sol-Gel Dip-Coating Method (졸-겔 침지법에 의한 $SiO_2.ZrO_2$계 다공질 저반사 코팅막 제조 및 특성)

  • 김상진;한상목;신대용;김경남
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.774-780
    • /
    • 1997
  • Porous low reflective coating films of SiO2.ZrO2 system were prepared from the mixed alkoxide solutions of Zr(O-nC3H7)4 and partially prehydrolyzed TEOS by the sol-gel method using the dip-coating technique. In the case of 90SiO2.10ZrO2 porous coating films with HCl and H2O content was 0.3 mole and 4 mole, 378 m2/g of the specific surface area, 0.254 cm3/g of total pore volume, 30-50$\AA$ of average pore diameter. The transmittance of 90SiO2.10ZrO2 porous coated films was 95.38% at the wavelength of 550 nm, compared with the parent glass, the transmittance was increased with 4.38%.

  • PDF

Ionic Conductivity of Solid Solution Ceramics in The System of Stabilized ZrO2 Prepared by Self-Propagating High-Temperature Synthesis

  • Soh, Deawha;Korobova, N.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.349-355
    • /
    • 2002
  • The ionic conductivity of cubic solid solutions in the systems of CaO-$ZrO_2$, $Y_2O_3-ZrO_2$ prepared by SHS was examined. The higher conductivity appears to be related to a lower activation energy rather than to the number of oxygen vacancies dictated by composition. Conductivity-temperature data was obtained at 1000 $^{\circ}C$ in atmosphere of low oxygen partial pressure (~$10^{-40}$ atm) for $Y_2O_3-ZrO_2$ cubic solid solutions. The data indicated that these materials could be reduced, and the decree of reduction would be related with the measuring electric field.

Improvement of Mechanical Strength of Porcelain Insulator with $ZrO_2$Addition ($ZrO_2$첨가에 따른 자기 애자의 기계적 강도 개선)

  • 최연규;송병기;안권옥;안용호;김상범;이동일
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.5
    • /
    • pp.454-460
    • /
    • 2001
  • 장석, 석영, 점토와 17 wt% $Al_2$O$_3$를 함유한 알루미나질 자기 애자를 제조하였다. 분말을 ball milling으로 6시간 분쇄하였으며 성형체를 압출법으로 제조한 후 터널가마에서 130$0^{\circ}C$, 50분 동안 소결하였다. 터널가마에서 소결한 시편의 소결밀도는 이론밀도의 97%에 도달하였고, 3점 꺾임강도는 1658kgf/$ extrm{cm}^2$ 이었으며 ICL(indentation crack length) 방법으로 측정한 파괴인성은 2.3 MPa.m$^{1}$2/이었다. 기계적 성질을 향상시키기 위하여 ZrO$_2$를 첨가하여 15 wt% $Al_2$O$_3$-2 wt% ZrO$_2$와 12 wt% $Al_2$O$_3$-5 wt% ZrO$_2$를 복합체를 제조하였다. ZrO$_2$를 첨가한 시편의 꺾임강도는 1740kgf/$\textrm{cm}^2$이고 파괴인성은 2.4 MPa.m$^{1}$2/로 약 10% 기계적 성질이 향상되었다.

  • PDF

Electrical Resistivity and Fracture Toughness of SiC-ZrB2

  • Shin, Yong-Deok;Ju, Jin-Young;Kwon, Ju-Sung
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.400-403
    • /
    • 1999
  • The mechanical and electrical properties of hot-pressed and annelaed $\beta$-SiC+39vol.% $ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3$(6:4 wt%). In this microstructures, no reactions and elongated $\alpha$-SiC grains with equiaxed $ZrB_2$ grains were observed between $\beta$-SiC and $ZrB_2$. The properties of the $\beta$-SiC+39vol.%$ZrB_2$ composites with 4wt% $Al_2O_3+Y_2O_3$ at R.T. are as follows: fracture toughness is 6.37 MPa.m1/2, electical resistivity is $1.51\times10^{-4}\Omega \cdot\textrm{cm}$ and the relative density is 98.6% of the theoretical density. The fracture toughness of the $\beta$-SiC+39 vol.% $ZrB_2$ composites were weakly decreased with increasing amount of $Al_2O_3+Y_2O_3$ additives. Internal stresses due to the difference of $\beta$-SiC and $ZrB_2$ thermal expansion coefficient and elastic modulus mismatch appeared to contribute to fracture toughening in $\beta$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites.

  • PDF

$\textrm{CO}_2$ Gas Sensor Based on $\textrm{Li}_2\textrm{ZrO}_3$ System ($\textrm{Li}_2\textrm{ZrO}_3$ 계를 이용한 $\textrm{CO}_2$ 가스 센서)

  • Park, Jin-Seong;Kim, Si-Uk;Lee, Eun-Gu;Kim, Jae-Yeol;Lee, Hyeon-Gyu
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.896-899
    • /
    • 1999
  • A carbon dioxide gas sensor was studied as a function of temperature and $CO_2$concentration in the Li$_2$ZrO$_3$ system. Lithium zirconate(Li$_2$ZrO$_3$) was synthesized by the heat-treatment of zirconia(ZrO$_2$)and Lithium carbonate(Li$_2$CO$_3$). The specimens were prepared both as bulk disk, 10mm in diameter and 1.0mm thickness, and thick films on an alumina substrate. Lithium zirconate readily responded to $CO_2$concentration from 0.1% to 100% in the range of 45$0^{\circ}C$ to $650^{\circ}C$. The sensitivity to $CO_2$ was dependent on the measuring temperature. Lithium zirconate(Li$_2$ZrO$_3$) decomposes into Li$_2$CO$_3$ and ZrO$_2$after the reaction with $CO_2$in the range of 45$0^{\circ}C$ to $650^{\circ}C$. Li$_2$CO$_3$ changes into Li$_2$O and $CO_2$ above $650^{\circ}C$. The material showed difficulty with reversibility and recovery. The optimum temperature for the highest sensitivity is around 55$0^{\circ}C$.

  • PDF

Synthesis of $Li_2$$ZrO_3$ Powder by a Precipitation-Combustion Process (침전연소법에 의한 $Li_2$$ZrO_3$ 분말 합성)

  • 박지연;정층환;오석진;김영석;국일현
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.451-457
    • /
    • 1998
  • $Li_2$$ZrO_3$ powder which is one of the candidates of breeding materials for the fusion reactor was syn-thesized by a precipitation-combustion process. Although precipitates from the reaction between zirconium nitrate and citric acid were existed in a precursor solution. $Li_2$$ZrO_3$ could easily be obtained by using the mixed fuel of urea and citric acid in stoichiometric composition. The phases of as-synthesized powder con-sisted of $Li_2$$ZrO_3$ and small amounts of $Li_6$$Zr_2O_3$ and $Li_2$$ZrO_3$ The latter phases disappeared after the cal-cination at $1100^{\circ}C$ for 2 h. The primary particle size and the specific surface area of as-synthesized powders were smaller than 20nm and 10-14 $M^2$/g, respectively. The primary particle size of the precipitation-combustion synthesized powders was affected by the size of precipitates present in a precursor solution.

  • PDF

Effect of $ZrO_2$Addition on the Microwave Dielectric Properties of BZN-SZN System Ceramics (BZN-SZN계 세라믹스의 마이크로파 유전 특성에 미치는 $ZrO_2$의 영향)

  • 윤석규;박우정;양우석;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1042-1045
    • /
    • 2001
  • Microwave dielectric properties of Ba(Zn$_{1}$3/Nb$_{2}$3/) $O_3$-Sr(Zn$_{1}$3/Nb$_{2}$3/) $O_3$(BZN-SZN) system were investigated as a function of sintering temperature and Zr $O_2$content. Density was increased and the temperature coefficient of resonant frequency (TCF, $\tau$$_{f}$) decreased with increasing sintering temperature. However dielectric constant (K) and Q$\times$f value did not change markedly with the sintering temperature. For the samples sintered at the same temperature, density, dielectric constant, and Q$\times$f value were increased and TCF was decreased with increasing Zr $O_2$concentration. Especially, the dielectric constant of the sample increased with x and exhibited the maximum value ($\varepsilon$$_{r}$=41) when x=0.6 at 1575$^{\circ}C$ sintered. TCF decreased with x and exhibited the minimum value ($\tau$$_{f}$=+0.8ppm/$^{\circ}C$) when x=1.0..0.

  • PDF