• Title/Summary/Keyword: 3X3 Masking

Search Result 9, Processing Time 0.032 seconds

Effects of thickness and background on the masking ability of high-trasnlucent zirconias (고투명도 지르코니아의 두께 및 하부 배경에 따른 색조 차단 효과)

  • Kim, Young-Gon;Jung, Ji-Hye;Kong, Hyun-Jun;Kim, Yu-Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.4
    • /
    • pp.199-208
    • /
    • 2021
  • Purpose: The purpose of this study was to compare and evaluate the masking ability of three types of high translucent zirconia according to the various thicknesses and backgrounds. Materials and Methods: Using three types of high-translucency zirconia (Ceramill zolid fx white, Ceramill zolid ht+ white, Ceramill zolid ht+ preshade A2), 10 cylindrical specimens were fabricated in 10mm diameter and each with four thicknesses (0.6 mm, 1.0 mm, 1.5 mm, 2.0 mm), respectively by CAD/CAM method. The background was 10 mm in diameter and 10 mm in thickness. A1, A2, A3 flowable resin backgrounds, blue-colored core resin background, and Ni-Cr alloy background were prepared, and black, white backgrounds provided by the spectrophotometer manufacturer (x-rite, Koblach, Austria) were used. zirconia specimens and the background specimen were stacked to measure L, a*, b* with Spectrophotometer (Color i5, x-rite, Koblach, Austria) and the ΔE value with the other background is calculated. The Calculated mean ΔE values were compared based on perceptibility threshold 1.0 and acceptability threshold 3.7. Nonparametric tests such as Kruskal-Wallis test were performed to verify statistical significance (α = 0.05). Results: There was a significant difference in the mean ΔE value according to the zirconia type, background and thickness change (P = 0.000). Conclusion: According to the results of this study, the pre-colored high-translucent zirconia can obtain the desired zirconia shade when it is restored on teeth, composite resins, and abutments except for the blue resin core.

Thickness and translucency of opaque shade composite resin for masking effect (배경 색조 차단 목적의 불투명 복합 레진의 두께와 반투명도)

  • Baek, Kyung-Won;Kim, Sung-Joon
    • The Journal of the Korean dental association
    • /
    • v.49 no.4
    • /
    • pp.203-210
    • /
    • 2011
  • The aims of this study were to evaluate the adequate thickness of opaque resins for situations such as an oral black cavity and discolored tooth structure, as well as the translucency of each opaque material at various thicknesses. Six opaque-shade composite resins (Z-350 OA3, Amelogen Universal A2O, Esthet-X A2O, Esthet-X A4O, Charmfil UO and Aelite Universal OA3) were prepared in metal molds with a hole of 8 mm in diameter and various thicknesses (0.5mm, 1.0mm, 1.5mm, 2.0mm, 2.5mm, 3.0 mm and 4.0mm). Four backgrounds (white tile, black tile, C4 shade porcelain and opaque resin itself) were used to determine the translucency parameter (between black and white backgrounds). and to mimic a black oral cavity (between black and opaque resin backgrounds) and a discolored tooth structure (between C4 and opaque resin backgrounds). Color measurements were made by a colorimeter to determine the CIELAB values of each specimen with each background and to calculate the translucency parameter and ${\Delta}E^*$ value difference among the specimens on the backgrounds. The translucency parameter and ${\Delta}E^*$ obtained between black and opaque resin backgrounds decreased in similar pattern as thickness increased. A C4 background was masked by resin thicknesses of 0.5-1.0mm, while a black background required thicknesses of 1.0-2.0mm. Adequate knowledge about differences in the optical character like translucency of the materials used is essential, together with the accumulated experience of the individual clinician.

Feasibility of Single-Shot Dual-Energy X-ray Imaging Technique for Printed-Circuit Board Inspection (인쇄회로기판 검사를 위한 단일조사 이중에너지 엑스선 영상기법의 유용성에 관한 연구)

  • Kim, Seung Ho;Kim, Dong Woon;Kim, Daecheon;Kim, Junwoo;Park, Ji Woong;Park, Eunpyeong;Kim, Jinwoo;Kim, Ho Kyung
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 2015
  • A single-shot dual-energy x-ray imaging technique has been developed using a sandwich detector by stacking two detectors, in which the front and rear detectors respectively produce relatively lower and higher x-ray energy images. Each detector layer is composed of a phosphor screen coupled with a photodiode array. The front detector layer employs a thinner phosphor screen, whereas the rear detector layer employs a thicker phosphor screen considering the quantum efficiency for x-ray photons with higher energies. We have applied the proposed method into the inspection of printed circuit boards, and obtained dual-energy images with background clutter suppressed. In addition, the single-shot dual-energy method provides sharper-edge images than the conventional radiography because of the unsharp masking effect resulting from the use of different thickness phosphors between the two detector layers. It is promising to use the single-shot dual-energy x-ray imaging for high-resolution nondestructive testing. For the reliable use of the developed method, however, more quantitative analysis is further required in comparisons with the conventional method for various types of printed circuit boards.

OPACITY AND MASHING EFFECT OF THE OPAQUE SHADE COMPOSITE RESINS (Opaque shade 복합레진의 opacity와 배경 색상 차단 능력의 평가)

  • Park, Su-Jung;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.356-364
    • /
    • 2007
  • The purpose of this study was to assess the background color-interceptive ability ana opacity of opaque shade composites (Universal composite, Filtek Z350, Charisma, Clearfil ST, Palpaque Estelite, Esthet-X, and Metafil Flo). Twenty four background specimens (diameter 5.5 mm, thickness 3.0 mm) with Root dentin Mustard (Bisco, Schaumburg, IL, USA) were made. The CIE $L^*a^*b^*$ value of background specimens was measured by a spectrophotometer (Spectrolino, GretagMacbeth, Regensdorf, Switzerland). Three specimens in every group were filled on the background specimens. The surface color of samples was measured by a spectrophotometer in 3.0 mm and every thickness to 0.5 mm while grinding. The color difference in the background color along with 3.0 mm specimen gauged the masking effect in each thickness while grinding and polishing. The opacity was calculated in 1 mm thick specimens. The opacity was in the decreasing order of Clearfil ST, Metafil Flo, Filtek Z350, Palpaque Estelite, Universal composite, Charisma, and Esthet-X (p < 0.05). As the thickness get reduced, $L^*$ value showed decreasing, $a^*$ increasing tendency. The surface color difference between pair of the 3.0 mm thick specimen and after grinding in same opaque resin was above 3.3 except Clearfil ST and Metafil Flo. The color difference (${\Delta}E^*$) between pair of background specimen and opaque resin built-up specimen showed more than 10.0 regardless kinds and thickness. The variance in opacity characteristics and color of the opaque composites is dependent upon manufacturer. When using the opaque resin, the optical properties of each material must be considered as well as cavity.

Fabrication of surface-enhanced Raman scattering substrate using black silicon layer manufactured through reactive ion etching (RIE 공정으로 제조된 블랙 실리콘(Black Silicon) 층을 사용한 표면 증강 라만 산란 기판 제작)

  • Kim, Hyeong Ju;Kim, Bonghwan;Lee, Dongin;Lee, Bong-Hee;Cho, Chanseob
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.267-272
    • /
    • 2021
  • In this study, Ag was deposited to investigate its applicability as a surface-enhanced Raman scattering substrate after forming a grass-type black silicon structure through maskless reactive ion etching. Grass-structured black silicon with heights of 2 - 7 ㎛ was formed at radio-frequency (RF) power of 150 - 170 W. The process pressure was 250 mTorr, the O2/SF6 gas ratio was 15/37.5, and the processing time was 10 - 20 min. When the processing time was increased by more than 20 min, the self-masking of SixOyFz did not occur, and the black silicon structure was therefore not formed. Raman response characteristics were measured based on the Ag thickness deposited on a black silicon substrate. As the Ag thickness increased, the characteristic peak intensity increased. When the Ag thickness deposited on the black silicon substrate increased from 40 to 80 nm, the Raman response intensity at a Raman wavelength of 1507 / cm increased from 8.2 × 103 to 25 × 103 cps. When the Ag thickness was 150 nm, the increase declined to 30 × 103 cps and showed a saturation tendency. When the RF power increased from 150 to 170 W, the response intensity at a 1507/cm Raman wavelength slightly increased from 30 × 103 to 33 × 103 cps. However, when the RF power was 200 W, the Raman response intensity decreased significantly to 6.2 × 103 cps.

Comparison of landmark position between conventional cephalometric radiography and CT scans projected to midsagittal plane (3차원 CT자료에서 선정된 계측점을 정중시상면으로 투사한 영상과 두부계측방사선사진상의 계측정의 위치 비교)

  • Park, Jae-Woo;Kim, Nam-Kug;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.38 no.6
    • /
    • pp.427-436
    • /
    • 2008
  • Objective: The purpose of this study is to compare landmark position between cephalometric radiography and midsagittal plane projected images from 3 dimensional (3D) CT. Methods: Cephalometric radiographs and CT scans were taken from 20 patients for treatment of mandibular prognathism. After selection of land-marks, CT images were projected to the midsagittal plane and magnified to 110% according to the magnifying power of radiographs. These 2 images were superimposed with frontal and occipital bone. Common coordinate system was established on the base of FH plane. The coordinate value of each landmark was compared by paired t test and mean and standard deviation of difference was calculated. Results: The difference was from $-0.14{\pm}0.65$ to $-2.12{\pm}2.89\;mm$ in X axis, from $0.34{\pm}0.78$ to $-2.36{\pm}2.55\;mm$ ($6.79{\pm}3.04\;mm$) in Y axis. There was no significant difference only 9 in X axis, and 7 in Y axis out of 20 landmarks. This might be caused by error from the difference of head positioning, by masking the subtle end structures, identification error from the superimposition and error from the different definition.

Implementation of Sharpness-Enhancement Algorithm based on Adaptive-Filter for Mobile-Display Apparatuses (Mobile Display 장치를 위한 Adaptive-Filter 기반형 선명도 향상 알고리즘의 하드웨어 구현)

  • Im, Jeong-Uk;Song, Jin-Gun;Lee, Sung-Jin;Min, Kyoung-Joong;Kang, Bong-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.109-112
    • /
    • 2007
  • Definition-Enhancement of the digitalized image has been being made researches continuously due to application a camera to a mobile-apparatus and the advent of a digital camera. In particular, the inputted image from a sensor goes through the process of ISP(Image Signal Process) prior to output as a visual image. The high-frequency components are offset by LPF(Low Pass Filter) that eliminates the noise of high spatial-frequency at the moment. In this paper, we propose an algorithm that outputs more vivid image by using adaptive-HPF(High Pass Filter) that has apt coefficients for diverse conditions of an image edge, nevertheless we do not employ any Edge-Detection algorithm to enhance a blurred image.

  • PDF

Characterization of GaN epitaxial layer grown on nano-patterned Si(111) substrate using Pt metal-mask (Pt 금속마스크를 이용하여 제작한 나노패턴 Si(111) 기판위에 성장한 GaN 박막 특성)

  • Kim, Jong-Ock;Lim, Kee-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.67-71
    • /
    • 2014
  • An attempt to grow high quality GaN on silicon substrate using metal organic chemical vapor deposition (MOCVD), herein GaN epitaxial layers were grown on various Si(111) substrates. Thin Platinum layer was deposited on Si(111) substrate using sputtering, followed by thermal annealing to form Pt nano-clusters which act as masking layer during dry-etched with inductively coupled plasma-reactive ion etching to generate nano-patterned Si(111) substrate. In addition, micro-patterned Si(111) substrate with circle shape was also fabricated by using conventional photo-lithography technique. GaN epitaxial layers were subsequently grown on micro-, nano-patterned and conventional Si (111) substrate under identical growth conditions for comparison. The GaN layer grown on nano-patterned Si (111) substrate shows the lowest crack density with mirror-like surface morphology. The FWHM values of XRD rocking curve measured from symmetry (002) and asymmetry (102) planes are 576 arcsec and 828 arcsec, respectively. To corroborate an enhancement of the growth quality, the FWHM value achieved from the photoluminescence spectra also shows the lowest value (46.5 meV) as compare to other grown samples.

Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data (KOMPSAT-5 후방산란계수 자료로 산출된 해상풍 검증)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1383-1398
    • /
    • 2018
  • Sea surface wind is one of the most fundamental variables for understanding diverse marine phenomena. Although scatterometers have produced global wind field data since the early 1990's, the data has been used limitedly in oceanic applications due to it slow spatial resolution, especially at coastal regions. Synthetic Aperture Radar (SAR) is capable to produce high resolution wind field data. KOMPSAT-5 is the first Korean satellite equipped with X-band SAR instrument and is able to retrieve the sea surface wind. This study presents the validation results of sea surface wind derived from the KOMPSAT-5 backscattering coefficient data for the first time. We collected 18 KOMPSAT-5 ES mode data to produce a matchup database collocated with buoy stations. In order to calculate the accurate wind speed, we preprocessed the SAR data, including land masking, speckle noise reduction, and ship detection, and converted the in-situ wind to 10-m neutral wind as reference wind data using Liu-Katsaros-Businger (LKB) model. The sea surface winds based on XMOD2 show root-mean-square errors of about $2.41-2.74m\;s^{-1}$ depending on backscattering coefficient conversion equations. In-depth analyses on the wind speed errors derived from KOMPSAT-5 backscattering coefficient data reveal the existence of diverse potential error factors such as image quality related to range ambiguity, discrete and discontinuous distribution of incidence angle, change in marine atmospheric environment, impacts on atmospheric gravity waves, ocean wave spectrum, and internal wave.