• Title/Summary/Keyword: 3T MRI System

Search Result 196, Processing Time 0.024 seconds

MR Angiography with Simultaneous Data Acquisition of Arteries and Veins(SAAV) Method and Artery-Vein Color Mapping in 0.3T MRI System (0.3T MRI 시스템에서의 동.정맥 동시 획득을 위한 자기공명 혈류 영상 기법(SAAV)과 동.정맥 color mapping)

  • 조종운;조지연;서성만;은충기;문치웅
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.275-280
    • /
    • 2003
  • The method of simultaneous data acquisition of arteries and veins(SAAV) was suggested to obtain MR angiography of arteries and veins at 0.3T low filed MRI system (Magfinder, AlLab. Korea). Two separated artery- and vein-images were put together using AVCM(Artery-Vein Color Mapping) algorithm and presented in the same image. In this study, artery- and vein-separated angiograms of volunteer's neck were obtained. Two dimensioal blood-enhanced images wre sequentially obtained using SAAV pulse sequence based on time-of-flight(TOF) method with flow compensation. Imaging parameters were TR/TE=70/12msec. FOV=230mm, slice thickness = 3mm, flip angle=90$^{\circ}$, matrix size=256${\times}$256${\times}$64mm. TSat TH/SPA=15/20mm, Ts_v=10msec and Ts_a=40ms. 3D MRA images were reconstructed using the maximum intensity projection(MIP) and the artery-vein color mapping(AVCM) algorithm. This study showed good possibility of clinical applications of MRA in 0.3T which provides valuable diagnostic information of clinical vascular diseases.

Evaluation of Noise Power Spectrum Characteristics by Using Magnetic Resonance Imaging 3.0T (3.0T 자기공명영상을 이용한 잡음전력스펙트럼 특성 평가)

  • Min, Jung-Whan;Jeong, Hoi-Woun;Kim, Seung-Chul
    • Journal of radiological science and technology
    • /
    • v.44 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • This study aim of quantitative assessment of Noise Power Spectrum(NPS) and image characteristics of by acquired the optimal image for noise characteristics and quality assurance by using magnetic resonance imaging(MRI). MRI device was (MAGNETOM Vida 3.0T MRI; Siemense healthcare system; Germany) used and the head/neck shim MR receive coil were 20 channels coil and a diameter 200 mm hemisphere phantom. Frequency signal could be acquired the K-space trajectory image and white image for NPS. The T2 image highest quantitatively value for NPS finding of showed the best value of 0.026 based on the T2 frequency of 1.0 mm-1. The NPS acquired of showed that the T1 CE turbo image was 0.077, the T1 CE Conca2 turbo image was 0.056, T1 turbo image was 0.061, and the T1 Conca2 turbo image was 0.066. The assessment of NPS image characteristics of this study were to that could be used efficiently of the MRI and to present the quantitative evaluation methods and image noise characteristics of 3.0T MRI.

3.0-Tesla 자기공명 영상장치용 TX/RX C-spine RF Coil의 개발

  • 류연철;류승학;최보영;오창현
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.143-143
    • /
    • 2001
  • 목적: 현재 3.0T MRI system은 세계적으로 개발이 진행되고 있는 가운데, 3.0T에서 사용할 수 있는 RF coil의 개발이 시급한 상황이다. 1.0T 및 1.5T MRI 와는 달리 3.0T에서 사용할 수 있는 Body coil 및 그에 따른 High power RF amplifier 제작에 많은 제약이 있다. 작은 용량의 RF amplifier를 이용하여 신체의 부분을 촬영 하고자 한다면, Tx/Rx 가능한 coil을 이용하면 가능할 것이다. 이러한 이유로 본 연구에서는 Tx/Rx 가능한 Quadrature type C-spine RF coil을 설계, 제작하여 3.0T 고자장 자기공명 영상장치에서의 임상진단 활용범위를 확대하였다.

  • PDF

CT and MRI image fusion reproducibility and dose assessment on Treatment planning system (치료계획시스템에서 전산화단층촬영과 자기공명영상의 영상융합 재현성 및 선량평가)

  • Ahn, Byeong Hyeok;Choi, Jae Hyeok;Hwang, Jae ung;Bak, Ji yeon;Lee, Du hyeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.33-41
    • /
    • 2017
  • Objectives: The aim of this study is to evaluate the reproducibility and usefulness of the images through the fusion of CT(Computed tomography) and MRI(Magnetic resonance imaging) using a self-manufactured phantom. We will also compare and analyze the target dose from acquired images. Materials and Methods: Using a self-manufactured phantom, CT images and MRI images are acquired by 1.5T and 3.0T of different magnetic fields. The reproducibility of the size and volume of the small holes present in the phantom is compared through the image from CT and 1.5T and 3.0T MRI, and dose changes are compared and analyzed on any target. Results: 13 small hole diameters were a maximum 31 mm and a minimum 27.54 mm in the CT scan and the were measured within an average of 29.28 mm 1 % compared to actual size. 1.5 T MRI images showed a maximum 31.65 mm and a minimum 24.3 mm, the average is 28.8 mm, which is within 1 %. 3.0T MRI images showed a maximum 30.2 mm and a minimum 27.92 mm, the average is 29.41 mm, which is within 1.3 %. The dose changes in the target were 95.9-102.1 % in CT images, 93.1-101.4 % in CT-1.5T MRI fusion images, and 96-102 % in CT-3.0T MRI fusion images. Conclusion: CT and MRI are applied with different algorithms for image acquisition. Also, since the organs of the human body have different densities, image distortion may occur during image acquisition. Because these inaccurate images description affects the volume range and dose of the target, accurate volume and location of the target can prevent unnecessary doses from being exposed and errors in treatment planning. Therefore, it should be applied to the treatment plan by taking advantage of the image display algorithm possessed by CT and MRI.

  • PDF

Fundamental Background for 3T MRI/MRS

  • Choe, Bo-Young
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.47-49
    • /
    • 2002
  • At present, the trend of magnetic field strength in MRI system is dramatically changing. In early 70, the only low field (<0.5T) was developed. It was technically difficult to develop the high field system. At that time, people believed that the fine MR imaging could not be obtained in the high field MR system due to the magnetic susceptibility effect. However, 1.5T system was evolved at the end of 80, and used for clinical usage. Thus, it was proved that the signal to noise ratio (SNR) could be greatly contribute to enhance the image quality. And, the results of functional MRI and MR spectroscopy could be improved in the higher field MR system. So, 8T system was eventually developed in Ohio State University Hospital at the end of 90. Therefore, there is no doubt that the system with the ultra high magnetic field strength will be developed near future in 21 century.

  • PDF

RF Resonators Using Microstrip Transmission Line at 3 T MRI (3 T 자기공명영상시스템에서의 마이크로스트립을 이용한 다양한 RF 공진기)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.663-666
    • /
    • 2013
  • This paper demonstrates four different radio frequency (RF) resonators at 3 T magnetic resonance imaging (MRI) system. An approach based on microstrip transmission line to identical RF resonators except upper stripline structure is investigated. Electromagnetic simulation results are compared for RF resonators and discussed in detail at 3 T.

Scoring System to Predict Malignancy for MRI-Detected Lesions in Breast Cancer Patients: Diagnostic Performance and Effect on Second-Look Ultrasonography (유방암 환자의 MRI에서 발견된 병변의 악성 예측을 위한 점수체계: 진단적 능력과 이차 초음파 결정에 미치는 영향)

  • Young Geol Kwon;Ah Young Park
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.2
    • /
    • pp.379-394
    • /
    • 2020
  • Purpose To design a scoring system to predict malignancy of additional MRI-detected lesions in breast cancer patients. Materials and Methods Eighty-six lesions (64 benign and 22 malignant) detected on preoperative MRI of 68 breast cancer patients were retrospectively included. The clinico-radiologic features were correlated with the histopathologic results using the Student's t-test, Fisher's exact test, and logistic regression analysis. The scoring system was designed based on the significant predictive features of malignancy, and its diagnostic performance was compared with that of the Breast Imaging-Reporting and Data System (BI-RADS) category. Results Lesion size ≥ 8 mm (p < 0.001), location in the same quadrant as the primary cancer (p = 0.005), delayed plateau kinetics (p = 0.010), T2 isointense (p = 0.034) and hypointense (p = 0.024) signals, and irregular mass shape (p = 0.028) were associated with malignancy. In comparison with the BI-RADS category, the scoring system based on these features with suspicious non-mass internal enhancement increased the diagnostic performance (area under the receiver operating characteristic curve: 0.918 vs. 0.727) and detected three false-negative cases. With this scoring system, 22 second-look ultrasound examinations (22/66, 33.3%) could have been avoided. Conclusion The scoring system based on the lesion size, location relative to the primary cancer, delayed kinetic features, T2 signal intensity, mass shape, and non-mass internal enhancement can provide a more accurate approach to evaluate MRI-detected lesions in breast cancer patients.

A Study on Applied to Optimal Diagnostic Device in Portal Vein Visualization: Focused on MRI and CT (간문맥 묘출을 위한 최적의 영상진단 장치에 관한 연구: MRI, CT 중심으로)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.217-225
    • /
    • 2019
  • The purpose of this study was to quantitate signal to noise ratio and contrast to noise ratio of the portal vein using CT and 3.0T MRI and to investigate the optimal imaging device. Twenty patients who inspective CT and 3.0T MRI between February 2018 and April 2018 were randomly assigned to receive data from the picture archiving communication system. The SNR and CNR values were evaluated by measuring the mean and standard deviation of the region of interest of the four regions of the portal vein (the main portal vein, the right vein, the left vein, and the middle vein). The results showed that SNR was 9.180.72 in the right context, 9.410.84 in the left context, 9.540.59 in the middle context, 9.550.75 in the order context, and 22.292.03 in the right context and 25.893 in the 3.0T MRI. 19, median context: 24.392.87, and order Mac: 26.642.30 (p<0.05). CNR was 3.790.68 in the CT context, 3.740.65 in the left context, 3.710.39 in the middle context, 3.790.68 in the order context, 9.490.65 in the right context, and 11.0001.90 in the 3.0T MRI, Intermediate context: 12.701.75, order Mac: 10.010.98, 3.0T MRI was higher than CT (p<0.05). In conclusion, SNR and CNR values were higher in the 3.0T MRI than CT in the 4 portal regions. Therefore, 3.0T MRI using non-ionizing radiation was the most superior imaging equipment than CT.

Ultrashort Echo Time MRI (UTE-MRI) Quantifications of Cortical Bone Varied Significantly at Body Temperature Compared with Room Temperature

  • Jerban, Saeed;Szeverenyi, Nikolaus;Ma, Yajun;Guo, Tan;Namiranian, Behnam;To, Sarah;Jang, Hyungseok;Chang, Eric Y.;Du, Jiang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.202-209
    • /
    • 2019
  • Purpose: To investigate the temperature-based differences of cortical bone ultrashort echo time MRI (UTE-MRI) biomarkers between body and room temperatures. Investigations of ex vivo UTE-MRI techniques were performed mostly at room temperature however, it is noted that the MRI properties of cortical bone may differ in vivo due to the higher temperature which exists as a condition in the live body. Materials and Methods: Cortical bone specimens from fourteen donors ($63{\pm}21$ years old, 6 females and 8 males) were scanned on a 3T clinical scanner at body and room temperatures to perform T1, $T2^*$, inversion recovery UTE (IR-UTE) $T2^*$ measurements, and two-pool magnetization transfer (MT) modeling. Results: Single-component $T2^*$, $IR-T2^*$, short and long component $T2^*s$ from bi-component analysis, and T1 showed significantly higher values while the noted macromolecular fraction (MMF) from MT modeling showed significantly lower values at body temperature, as compared with room temperature. However, it is noted that the short component fraction (Frac1) showed higher values at body temperature. Conclusion: This study highlights the need for careful consideration of the temperature effects on MRI measurements, before extending a conclusion from ex vivo studies on cortical bone specimens to clinical in vivo studies. It is noted that the increased relaxation times at higher temperature was most likely due to an increased molecular motion. The T1 increase for the studied human bone specimens was noted as being significantly higher than the previously reported values for bovine cortical bone. The prevailing discipline notes that the increased relaxation times of the bound water likely resulted in a lower signal loss during data acquisition, which led to the incidence of a higher Frac1 at body temperature.

Evaluation of the Resolution Characteristics by Using American College of Radiology Phantom for Magnetic Resonance Imaging (자기공명영상에서 ACR 팬텀을 이용한 해상력 특성 평가)

  • Min, Jung-Whan;Jeong, Hoi-Woun;Han, Ji-Hyun;Lee, Si-Nae;Kim, Min-Ji;Kim, Seung-Chul
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.11-17
    • /
    • 2022
  • This study was purpose to quantitative assessment of the resolution characteristics by using American college of radiology(ACR) phantom for magnetic resonance imaging (MRI). The MRI equipment was used (Achiva 3.0T MRI, Philips system, Netherlands) and the head/neck matrix shim SENSE head coil were 32 channels(elements) receive MR coil. And the MRI equipment was used (Discovery MR 750, 3.0T MRI, GE medical system, America) and the head/neck matrix shim MC 3003G-32R 32-CH head coil were receive MR coil. As for the modulation transfer function(MTF) comparison result by using ACR magnetic resonance imaging phantom, the MTF value of the ACR standard T2 image in GE equipment is 0.199 when the frequency is 1.0 mm-1 and the MTF value of the hospital T2 image in Philips equipment is 0.528. It was used efficiently by using a general sequence more than the standard sequence method using the ACR phantom. In addition it is significant that the quantitative quality assurance evaluation method for resolution characteristics was applied mutatis mutandis, and the result values of the physical image characteristics of the 3.0T MRI device were presented.