• Title/Summary/Keyword: 3DOF Spherical Parallel Robot

Search Result 2, Processing Time 0.014 seconds

Development of 3 DOF Parallel Spherical Robot for Artificial Eyeball (인공안구 구현을 위한 병렬 구조의 3자유도 회전 로봇 개발)

  • Park, Sung Ryung;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.6
    • /
    • pp.535-541
    • /
    • 2014
  • In this research, three degree-of-freedom parallel spherical robot is developed for an artificial eyeball. The proposed system is comprised of a moving and a base plate, three prismatic actuators, and a ball joint for an angular movement of the moving plate. The vector analysis is employed to investigate the relationship between positions of the actuators and a pose of the moving plate. The required ranges for every actuators are calculated using the derived inverse kinematics in regard to the combination of two different levels for the size of the system component. Then the size of every components is determined from the analyzed trend. PI controller is employed for the position control of the moving plate. Finally the proposed system is verified using an arbitrary path of the angular movement.

Kinematic and dynamic analysis of a spherical three degree of freedom joint rehabilitation exercise equipment (3자유도 구형관절 재활운동기기의 기구학 및 동역학 해석)

  • Kim, Seon-Pil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.16-29
    • /
    • 2009
  • This paper investigates the kinematic and dynamic analysis of a spherical three degree of freedom parallel joint module, which is used in the exercise equipment for balance and leg-strength improvement of aged people. The joint module has three dyads which consist of two links and three revolute joints, and their all joints intersect at the global point located at the module's center. The paper shows the explicit mathematical procedure for deriving the closed form solutions in the inverse and forward position analysis of this parallel joint module. In velocity and acceleration analysis, we derived relations for joint velocities and accelerations of dyads and rotational velocity and acceleration of the top plate. For applying this module to rehabilitation exercise, we determined the dynamic model of the Korean males in their 50s and examined the model's results by dynamic model simulation.