• Title/Summary/Keyword: 3D-mammography

Search Result 16, Processing Time 0.026 seconds

Evaluation of the Usefulness of 3D Printed Shielding Materials Using Monte Carlo Simulation during Mammography (유방 X선 검사 시 몬테카를로 시뮬레이션을 이용한 3D 프린팅 차폐재료의 효용성 평가)

  • Cho, Yong In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.295-301
    • /
    • 2020
  • Radiation exposure exposed during mammography, which is performed for early examination of breast cancer, has also been suggested as a cause of carcinogenesis in the past, and scattered rays generated during examination may cause unnecessary radiation exposure to surrounding organs. In this study, the Monte Carlo simulation was used to evaluate the human organ doses exposed during conventional mammography, and to estimate the dose reduction effect for each organ when using 3D printing materials for radiation protection by scattered rays. As a result of organ dose evaluation, the breast on the opposite side of the examination was about 22.0% of the breast on the test side and about 58.6% on the eye, which was highly influenced by the scattering-ray. When using the 3D printing shield to protect it, the breast on the opposite side of the test showed an effective dose reduction effect at a thickness of 1 mm.

A study of dose and image quality with Convergence FFDM and DBT using tissue-equivalent phantom in digital mammography (유방조직등가 팬텀을 이용한 디지털유방촬영장치의 FFDM과 DBT의 선량과 영상품질에 대한 융합 연구)

  • Yoo, Young-Sin;Han, Dong-Kyoon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.29-34
    • /
    • 2019
  • In this study, we measure dose against various density and thickness using phantom to compare FFDM to DBT of Digital mammography equipment and evaluate usefulness of DBT through compare the image quality of FFDM and DBT. We use mammography equipment, Selenia Dimensions ; this is able to examine breast by both FFDM and DBT, The results are that when the thickness of phantom is 6cm or more and density is 70% or more and the thickness of phantom is 7cm or more and density is 50% or more, AGD of DBT is lower than that of FFDM. The evaluation results of image quality are that in the tumor and small calcification group that composed by mammary tissue and fat, FFDM is great and in fibrin, DBT is great. But in the all thicknesses of BR3D phantom that reflected overlapped tissue of breasts, DBT is great in calcification group, fibrin and tumor. DBT is greater image quality and lower dose more than FFDM in Thick and high density breast, Therefore, DBT is more useful in Korean women's breast that is characterized dense breast than FFDM.

A Study on the Necessity of an Age Limitation in Screening Mammography (검진 기관에서의 선별 유방촬영술 시행에 따른 연령 제한의 필요성에 대한 연구)

  • Yun, Ha-Yan;Lee, Choon-Mi;Ahn, Ui-Kyeong;Kim, Yong-Hwan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.33-41
    • /
    • 2010
  • National Cancer Screening Project and Korean Society of Breast Imaging recommend that breast cancer screening should be performed on those aged 40 and above. Nevertheless, this recommendation is usually ignored by a number of medical institutions. The purpose of this study is to emphasize the necessity of an age limitation in screening mammography. Ten institutions were randomly selected and telephone inquiries about patients' age limitation and internal guidelines were set up. The 3,214 women, who underwent screening mammography through 'GE Senography 2000D' in each hospital, were classified into five groups according to age(from 20s to 40s, at intervals of 5). And then, collected data was analyzed by a radiologist in accordance with ACR-BIRADS(American College of Radiology Breast Imaging Reporting and Data System), through which breast parenchymal density and the results of analysis were categorized in order to predict the sensitivity of mammography. Information about craniocaudal-view mammograms was automatically produced by use of GE Senography 2000D, and the average glandular dose was retrospectively analyzed through the program 'Excel 2007.' Two institutions did not set the age limitation. Other seven institutions internally allowed those who wanted to receive mammography regardless of age. Approximately 99% of those aged 20 to 29 were judged as having the dense breast. In those aged 35 to 39, breast parenchymal density tended to be lower, but the fatty breast to increase. In the case of 'category-zero' that does not need additional tests, the rate of 'heterogeneously dense' and 'extremely dense' reached to 83.1% and 15.1% respectively. Regarding dense breasts, there was no sufficient information for image reading. The glandular dose, applied to 3,214, was 1.47mGy on the average. In those aged 20 to 24 who are sensitive to radiation, the average glandular dose indicated 1.59mGy. Those aged 35 and above showed the lowest value, 1.43mGy. In those aged 35 to 39, the breast tended to change from denseness to fattiness. The average glandular dose was lowest in those aged 35 and above, which suggests that screening mammography should be periodically performed on those aged 35 and above in order that breast cancer may be early detected. On the other hand, in those aged less than 35, it is difficult to analyze mammograms due to the high density of breast parenchyma, and also retakes become frequent. In particular, subjects may be exposed to excessive doses. Accordingly, it should be substituted by breast self-examination or clinical breast examination. In case of need, it is advisable to perform ultrasonography.

  • PDF

The Utility Evaluation of Reconstructed 3-D Images by Maximum Intensity Projection in Magnetic Resonance Mammography and Cholangiopancreatography

  • Cho, Jae-Hwan;Lee, Hae-Kag;Park, Cheol-Soo;Kim, Ham-Gyum;Baek, Jong-Geun;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.365-371
    • /
    • 2014
  • The aim of this study was to evaluate the utility of 3-D images by comparing and analyzing reconstructed 3-D images from fast spin echo images of MRI cholangiopancreatography (MRCP) images using maximum intensity projection (MIP) with the subtraction images derived from dynamic tests of magnetic resonance mammography. The study targeted 20 patients histologically diagnosed with pancreaticobiliary duct disease and 20 patients showing pancreaticobiliary duct diseases, where dynamic breast MR (magnetic resonance) images, fast spin echo imaged of pancreaticobiliary duct, and 3-D reconstitution images using a 1.5T MR scanner and 3.0T MR scanner were taken. As a result of the study, the signal-to-noise ratio in the subtracted breast image before and after administering the contrast agent and in the reconstructed 3-D breast image showed a high ratio in the reconstructed image of lesional tissue, relevant tissue, and fat tissue. However, no statistically meaningful differences were found in the contrast-to-noise ratio of the two images. In the case of the MRCP image, no differences were found in the ratios of the fast spin echo image and reconstructed 3-D image.

The Role of Dynamic Contrast Enhanced MR Mammography in Differentiation between Benign and Malignant Breast Lesions

  • 한송이;차은숙;정상설;김학희;변재영;이재문
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.135-135
    • /
    • 2002
  • Purpose: To assess diagnostic accuracy of dynamic contrast enhanced MR mammography in differentiating between benign and malignant lesions. Materials and methods: Ninety-three patients with suspicious mammographic, sonographic or palpable findings underwent pre- or postoperative contrast-enhanced MR imaging of breast using three dimensional fast low-angle shot (3D FLASH) sequence (16/4 msec[repetition time / echo time], 20 flip angle, 3mm slice thickness with no slice gap, 256 by 256 in-plane matrix) covering whole breasts. T1 weighted images were obtained before and after bolus administration of gadopentetate dimeglumine (0.15 mmol/kg). Subtraction images and time-signal intensity curves of region of interest were obtained sequentially and correlated with pathologic diagnoses of lesions.

  • PDF

Computer Simulation for X-ray Breast Elastography (X선 유방 탄성 영상을 위한 컴퓨터 모의 실험)

  • Kim, Hyo-Geun;Aowlad Hossain, A.B.M.;Lee, Soo-Yeol;Cho, Min-Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.158-164
    • /
    • 2011
  • Breast cancer is the most frequently appearing cancer in women, these days. To reduce mortality of breast cancer, periodic check-up is strongly recommended. X-ray mammography is one of powerful diagnostic imaging systems to detect 50~100 um micro-calcification which is the early sign of breast cancer. Although x-ray mammography has very high spatial resolution, it is not easy yet to distinguish cancerous tissue from normal tissues in mammograms and new tissue characterizing methods are required. Recently ultrasound elastography technique has been developed, which uses the phenomenon that cancerous tissue is harder than normal tissues. However its spatial resolution is not enough to detect breast cancer. In order to develop a new elastography system with high resolution we are developing x-ray elasticity imaging technique. It uses the small differences of tissue positions with and without external breast compression and requires an algorithm to detect tissue displacement. In this paper, computer simulation is done for preliminary study of x-ray elasticity imaging. First, 3D x-ray breast phantom for modeling woman's breast is created and its elastic model for FEM (finite element method) is generated. After then, FEM experiment is performed under the compression of the breast phantom. Using the obtained displacement data, 3D x-ray phantom is deformed and the final mammogram under the compression is generated. The simulation result shows the feasibility of x-ray elasticity imaging. We think that this preliminary study is helpful for developing and verifying a new algorithm of x-ray elasticity imaging.

Comparison of Digital Mammography and Digital Breast Tomosynthesis (디지털 유방촬영기기와 3차원 디지털 유방단층영상합성기기의 비교연구)

  • Kim, Ye-Seul;Park, Hye-Suk;Choi, Jae-Gu;Choi, Young-Wook;Park, Jun-Ho;Lee, Jae-Jun;Kwak, Su-Bin;Kim, Eun-Hye;Kim, Ju-Yeon;Jung, Hyun-Jung;Lee, Haeng-Hwa;Bae, Gyu-Won;Lee, Mi-Young;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.261-268
    • /
    • 2012
  • Breast cancer is the second leading cause of women cancer death in Korea. The key for reducing disease mortality is early detection. Although digital mammography (DM) has been credited as one of the major reasons for the early detection to decrease in breast cancer mortality observed in the last 20 years, DM is far from perfect for several limitations. Digital breast tomosynthesis (DBT) is expected to overcome some inherent limitations of conventional mammography caused by overlapping of normal tissue and pathological tissue during the standard 2D projections for the improved lesion margin visibility and early breast cancer detection. In this study, we compared a DM system and DBT system acquired with different thickness of breast phantom. We acquired breast phantom data with same average glandular dose (AGD) from 1 mGy to 4 mGy under same experimental condition. The contrast, micro-calcification measurement accuracy and observer study were conducted with breast phantom images. As a result, the higher accuracy of lesion detection with DBT system compared to DM system was demonstrated in this study. Furthermore, the pain of patients caused by severe compression can be reduced with DBT system. In conclusion, the results indicated that DBT system play an important role in breast cancer detection.

Suggestion of The Manual Exposure Condition Guideline for Reducing Patient Dose in Digital Breast Tomosynthesis (디지털 유방단층촬영의 피폭선량 경감을 위한 수동 촬영조건의 가이드라인 제시)

  • Hong, Eun-Ae;Lee, In-Ja
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.483-491
    • /
    • 2016
  • The conditions after exposure to digital mammography and digital breast tomosynthesis were analyzed. The examinations for the ACR phantom were done using manual exposure, not auto exposure, to examine image discrimination and patient dose. As a result, the following results were derived: In the CC exposure, the kVp was 2kVp higher while mAs decreased to 58.6% for the 3D tomography. Such result showed an approximate decrease of 60mAs. At that time, the patients' Average Glandular Dose (AGD) was 1.65mGy in 2D and 1.87mGy in 3D; thus, AGD of 3D was shown to have about 1.13times higher. The result of the manual exposure revealed a reduced mAs of up to 80%; there was no effect in the assessment standard in terms of image discrimination, resulting in more than 10 points. When mAs was reduced to 80% in the manual exposure for ACR phantom, AGD was decreased to 0.66mGy. The diagnostic values of images were maintained and patients dose was reduced in the manual exposure in the AEC condition for 3D. Since the use of 3D has recently increased, using the manual exposure has been recommended in this study to improve the diagnostic value, while, simultaneously reducing patients dose.

Role of Breast Tomosynthesis in Diagnosis of Breast Cancer for Japanese Women

  • Takamoto, Yayoi;Tsunoda, Hiroko;Kikuchi, Mari;Hayashi, Naoki;Honda, Satoshi;Koyama, Tomomi;Ohde, Sachiko;Yagata, Hiroshi;Yoshida, Atsushi;Yamauchi, Hideko
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3037-3040
    • /
    • 2013
  • Introduction: Mammography is the most basic modality in breast cancer imaging. However, the overlap of breast tissue depicted on conventional two-dimensional mammography (2DMMG) may create significant obstacles to detecting abnormalities, especially in dense or heterogeneously dense breasts. In three-dimensional digital breast tomosynthesis (3DBT), tomographic images of the breast are reconstructed from multiple projections acquired at different angles. It has reported that this technology allows the generation of 3D data, therefore overcoming the limitations of conventional 2DMMG for Western women. We assessed the detectability of lesions by conventional 2DMMG and 3DBT in diagnosis of breast cancer for Japanese women. Methods: The subjects were 195 breasts of 99 patients (median age of 48 years, range 34~82 years) that had been pathologically diagnosed with breast cancer from December 20, 2010 through March 31, 2011. Both conventional 2DMMG and 3DBT imaging were performed for all patients. Detectability of lesions was assessed based on differences in category class. Results: Of the affected breasts, 77 (75.5%) had lesions assigned to the same categories by 2DMMG and 3DBT. For 24 (23.5%) lesions, the category increased in 3DBT indicating improvement in diagnostic performance compared to 2DMMG. 3DBT improved diagnostic sensitivity for patients with mass, focal asymmetric density (FAD), and architectural distortion. However, 3DBT was not statistically superior in diagnosis of the presence or absence of calcification. Conclusions: In this study, 3DBT was superior in diagnosing lesions in form of mass, FAD, and/or architectural distortion. 3DBT is a novel technique that may provide a breakthrough in solving the difficulties of diagnosis caused by parenchyma overlap for Japanese women.

Factors Affecting Breast Cancer Detectability on Digital Breast Tomosynthesis and Two-Dimensional Digital Mammography in Patients with Dense Breasts

  • Soo Hyun Lee;Mi Jung Jang;Sun Mi Kim;Bo La Yun;Jiwon Rim;Jung Min Chang;Bohyoung Kim;Hye Young Choi
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.58-68
    • /
    • 2019
  • Objective: To compare digital breast tomosynthesis (DBT) and conventional full-field digital mammography (FFDM) in the detectability of breast cancers in patients with dense breast tissue, and to determine the influencing factors in the detection of breast cancers using the two techniques. Materials and Methods: Three blinded radiologists independently graded cancer detectability of 300 breast cancers (288 women with dense breasts) on DBT and conventional FFDM images, retrospectively. Hormone status, histologic grade, T stage, and breast cancer subtype were recorded to identify factors affecting cancer detectability. The Wilcoxon signed-rank test was used to compare cancer detectability by DBT and conventional FFDM. Fisher's exact tests were used to determine differences in cancer characteristics between detectability groups. Kruskal-Wallis tests were used to determine whether the detectability score differed according to cancer characteristics. Results: Forty breast cancers (13.3%) were detectable only with DBT; 191 (63.7%) breast cancers were detected with both FFDM and DBT, and 69 (23%) were not detected with either. Cancer detectability scores were significantly higher for DBT than for conventional FFDM (median score, 6; range, 0-6; p < 0.001). The DBT-only cancer group had more invasive lobular-type breast cancers (22.5%) than the other two groups (i.e., cancer detected on both types of image [both-detected group], 5.2%; cancer not detected on either type of image [both-non-detected group], 7.3%), and less detectability of ductal carcinoma in situ (5% vs. 16.8% [both-detected group] vs. 27.5% [both-non-detected group]). Low-grade cancers were more often detected in the DBT-only group than in the both-detected group (22.5% vs. 10%, p = 0.026). Human epidermal growth factor receptor-2 (HER-2)-negative cancers were more often detected in the DBT-only group than in the both-detected group (92.3% vs. 70.5%, p = 0.004). Cancers surrounded by mostly glandular tissue were detected less often in the DBT only group than in the both-non-detected group (10% vs. 31.9%, p = 0.016). DBT cancer detectability scores were significantly associated with cancer type (p = 0.012), histologic grade (p = 0.013), T and N stage (p = 0.001, p = 0.024), proportion of glandular tissue surrounding lesions (p = 0.013), and lesion type (p < 0.001). Conclusion: Invasive lobular, low-grade, or HER-2-negative cancer is more detectable with DBT than with conventional FFDM in patients with dense breasts, but cancers surrounded by mostly glandular tissue might be missed with both techniques.