• Title/Summary/Keyword: 3D-Warping

Search Result 99, Processing Time 0.027 seconds

Effect of Three-dimensional Warping on Stiffness Constants of Closed Section Composite Beams

  • Dhadwal, Manoj Kumar;Jung, Sung Nam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.467-473
    • /
    • 2017
  • This paper focuses on the investigation of three-dimensional (3D) warping effect on the stiffness constants of composite beams with closed section profiles. A finite element (FE) cross-sectional analysis is developed based on the Reissner's multifield variational principle. The 3D in-plane and out-of-plane warping displacements, and sectional stresses are approximated as linear functions of generalized sectional stress resultants at the global level and as FE shape functions at the local sectional level. The classical elastic couplings are taken into account which include transverse shear and Poisson deformation effects. A generalized Timoshenko level $6{\times}6$ stiffness matrix is computed for closed section composite beams with and without warping. The effect of neglecting the 3D warping on stiffness constants is shown to be significant indicating large errors as high as 93.3%.

Research on Robustness of 2D DWT-Based Watermarking in Intermediate Viewpoint by 3D Warping

  • Park, Scott;Choi, Hyun-Jun;Yang, Won-Jae;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.173-180
    • /
    • 2014
  • This paper investigates the robustness of watermarking techniques for stereo or multi-view images generated from texture and depth images. A three-dimensional (3D) warping technique is applied to texture and depth images to generate stereo or multi-view images for a 3D display. By using the 3D warping technique, in this paper, we developed watermarking techniques and evaluated the robustness of these techniques that can extract watermarks from texture images even when the viewpoints are moved. A depth image is used to generate a stereo image with the largest viewpoint difference to the left and right. The overlapping region in the stereo image that does not disappear after warping is then obtained, and DWT is applied to this region to embed a watermark in the LL sub-band. The proposed watermarking techniques were found to yield bit error rates of about 3%-16% when they were applied to stereo images generated from texture and depth images. Furthermore, the results showed that the copyright could be seen when the extracted watermark was visually confirmed.

ROI-Based 3D Video Stabilization Using Warping (관심영역 기반 와핑을 이용한 3D 동영상 안정화 기법)

  • Lee, Tae-Hwan;Song, Byung-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.76-82
    • /
    • 2012
  • As the portable camcorder becomes popular, various video stabilization algorithms for de-shaking of camera motion have been developed. In the past, most video stabilization algorithms were based on 2-dimensional camera motion, but recent algorithms show much better performance by considering 3-dimensional camera motion. Among the previous video stabilization algorithms, 3D video stabilization algorithm using content-preserving warps is known as the state-of-the art owing to its superior performance. But, the major demerit of the algorithm is its high computational complexity. So, we present a computationally light full-frame warping algorithm based on ROI (region-of-interest) while providing comparable visual quality to the state-of-the art in terms of ROI. First, a proper ROI with a target depth is chosen for each frame, and full-frame warping based on the selected ROI is applied.

격자무늬를 갖는 에어포일의 단면 해석 및 워핑 모형 제작

  • Chu, Hyeon-Ji;Han, Hui-Do;Kim, Nam-Jo
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.257-262
    • /
    • 2015
  • In this paper, the cross-section properties of thin-walled beam are calculated through KSec2D in consist of Saint-Venant theory. To investigate tendency increasing the thickness, we analysis cross-section using isotropic material. In the asymmetric cross-section, we investigate effect caused cross-section properties accompanied increasing the thickness. The structural properties such as bending stiffness, tosion stiffness per area of each cross-section in three cases is compared through increasing thickness. The warping displacement calculated by KSed2D is modeled by CATIA. In order to show that warping influence the cross-section, the warping shape modeled CATIA is printed 3D printer.

  • PDF

Visual Fatigue Reduction Based on Depth Adjustment for DIBR System

  • Liu, Ran;Tan, Yingchun;Tian, Fengchun;Xie, Hui;Tai, Guoqin;Tan, Weimin;Liu, Junling;Xu, Xiaoyan;Kadri, Chaibou;Abakah, Naana
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1171-1187
    • /
    • 2012
  • A depth adjustment method for visual fatigue reduction for depth-image-based rendering (DIBR) system is proposed. One important aspect of the method is that no calibration parameters are needed for adjustment. By analyzing 3D image warping, the perceived depth is expressed as a function of three adjustable parameters: virtual view number, scale factor and depth value of zero parallax setting (ZPS) plane. Adjusting these three parameters according to the proposed parameter modification algorithm when performing 3D image warping can effectively change the perceived depth of stereo pairs generated in DIBR system. As the depth adjustment is performed in simple 3D image warping equations, the proposed method is facilitative for hardware implementation. Experimental results show that the proposed depth adjustment method provides an improvement in visual comfort of stereo pairs as well as generating comfortable stereoscopic images with different perceived depths that people desire.

A continuum mechanics based 3-D beam finite element with warping displacements and its modeling capabilities

  • Yoon, Kyungho;Lee, Youngyu;Lee, Phill-Seung
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.411-437
    • /
    • 2012
  • In this paper, we propose a continuum mechanics based 3-D beam finite element with cross-sectional discretization allowing for warping displacements. The beam element is directly derived from the assemblage of 3-D solid elements, and this approach results in inherently advanced modeling capabilities of the beam element. In the beam formulation, warping is fully coupled with bending, shearing, and stretching. Consequently, the proposed beam elements can consider free and constrained warping conditions, eccentricities, curved geometries, varying sections, as well as arbitrary cross-sections (including thin/thick-walled, open/closed, and single/multi-cell cross-sections). We then study the modeling and predictive capabilities of the beam elements in twisting beam problems according to geometries, boundary conditions, and cross-sectional meshes. The results are compared with reference solutions obtained by analytical methods and solid and shell finite element models. Excellent modeling capabilities and solution accuracy of the proposed beam element are observed.

Hole Filling Algorithm for a Virtual-viewpoint Image by Using a Modified Exemplar Based In-painting

  • Ko, Min Soo;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1003-1011
    • /
    • 2016
  • In this paper, a new algorithm by using 3D warping technique to effectively fill holes that are produced when creating a virtual-viewpoint image is proposed. A hole is defined as the region that cannot be seen in the reference view when a virtual view is created. In the proposed algorithm, to reduce the blurring effect that occurs on the hole region filled by conventional algorithms and to enhance the texture quality of the generated virtual view, Exemplar Based In-painting algorithm is used. The boundary noise which occurs in the initial virtual view obtained by 3D warping is also removed. After 3D warping, we estimate the relative location of the background to the holes and then pixels adjacent to the background are filled in priority to get better result by not using only adjacent object's information. Also, the temporal inconsistency between frames can be reduced by expanding the search region up to the previous frame when searching for most similar patch. The superiority of the proposed algorithm compared to the existing algorithms can be shown through the experimental results.

Depth Map Based Distributed Multi-view Video Coding Scheme through an Efficient Side Information Generation (효율적인 보조 정보 생성을 통한 깊이지도 기반의 분산 다시점 비디오 코딩 기법)

  • Yoo, Ji-Hwan;Lee, Dong-Seok;Kim, Tae-June;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1093-1103
    • /
    • 2009
  • In this paper, we propose a new depth map based distributed multi-view video coding algorithm through an efficient side information generation. A distributed video coding scheme corrects errors between an original image and side information generated at a decoder by using channel coding techniques. Therefore, the more accurate side information is generated, the better performance of distributed video coding scheme is achieved. In the proposed algorithm, a distributed video coding scheme is applied to multi-view video coding based on depth map. Side information is also generated from images of adjacent views through 3D warping by using a depth map and is also combined with MCTI(motion compensated temporal interpolation) which uses images on a temporal axis, and 3D warping. Experimental results show that side information generated by using the proposed algorithm has 0.97dB better average PSNR compared with using MCTI and 3D warping separated. In addition, 8.01% of average bit-rate has been decreased while the same PSNR in R-D curves is kept.

Interframe Coding of 3-D Medical Image Using Warping Prediction (Warping을 이용한 움직임 보상을 통한 3차원 의료 영상의 압축)

  • So, Yun-Sung;Cho, Hyun-Duck;Kim, Jong-Hyo;Ra, Jong-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.223-231
    • /
    • 1997
  • In this paper, an interframe coding method for volumetric medical images is proposed. By treating interslice variations as the motion of bones or tissues, we use the motion compensation (MC) technique to predict the current frame from the previous frame. Instead of a block matching algorithm (BMA), which is the most common motion estimation (ME) algorithm in video coding, image warping with biolinear transformation has been suggested to predict complex interslice object variation in medical images. When an object disappears between slices, however, warping prediction has poor performance. In order to overcome this drawback, an overlapped block motion compensation (OBMC) technique is combined with carping prediction. Motion compensated residual images are then encoded by using an embedded zerotree wavelet (EZW) coder with small modification for consistent quality of reconstructed images. The experimental results show that the interframe coding suing warping prediction provides better performance compared with interframe coding, and the OBMC scheme gives some additional improvement over the warping-only MC method.

  • PDF

RAY-SPACE INTERPOLATION BYWARPING DISPARITY MAPS

  • Moriy, Yuji;Yendoy, Tomohiro;Tanimotoy, Masayuki;Fujiiz, Toshiaki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.583-587
    • /
    • 2009
  • In this paper we propose a new method of Depth-Image-Based Rendering (DIBR) for Free-viewpoint TV (FTV). In the proposed method, virtual viewpoint images are rendered with 3D warping instead of estimating the view-dependent depth since depth estimation is usually costly and it is desirable to eliminate it from the rendering process. However, 3D warping causes some problems that do not occur in the method with view-dependent depth estimation; for example, the appearance of holes on the rendered image, and the occurrence of depth discontinuity on the surface of the object at virtual image plane. Depth discontinuity causes artifacts on the rendered image. In this paper, these problems are solved by reconstructing disparity information at virtual camera position from neighboring two real cameras. In the experiments, high quality arbitrary viewpoint images were obtained.

  • PDF