• Title/Summary/Keyword: 3D-SPACE

Search Result 3,629, Processing Time 0.041 seconds

Health Risk Factors and Ventilation Improvements in Welding Operation at Large-sized Casting Process (대형 주물공정 용접작업장의 건강 위해인자 및 환기 개선)

  • Jung, Jong Hyeon;Jung, Yu Jin;Lee, Sang Man;Lee, Jung Hee;Shon, Byung Hyun;Lim, Hyun Sul
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.171-178
    • /
    • 2014
  • In this study we have examined the health risk factors and analyzing data of laborers working at the welding operation at large-sized casting process. In order to improve the working environment of workplace, an effective ventilation method was proposed after performing CFD (computational fluid dynamics) modeling and measurement of pollutants. As a result of examining the health risk factors of workers, oxidized steel dust is the main pollution source in the company A, welding fume in the companies B and C, and welding fume and oxidized steel dust in the company D. The fume concentration in the workers' breathing zone was $0.05{\sim}4.37mg/m^3$, and the fume concentration in the indoor air at the welding process was $0.13{\sim}7.54mg/m^3$. From a result of CFD, a local exhaust with an exhaust duct adjacent to welding point was found to be most effective in case of the exhaust process. In case of air supply, we found that a desired location of air supply fan would be at the end of the opening. If a standardizing the ventilation system for tunnel-type semi-enclosed space at a large-sized casting process is introduced in welding work places in the future, it would be more effective to protect the health of welding workers working at the casting industry and shipbuilding industry and improve the work environment.

Optical and Structural Analysis of BaSi2O2N2:Eu Green Phosphor for High-Color-Rendering Lighting (고연색 백색 광원용 BaSi2O2N2:Eu 형광체의 광학·구조 특성 분석)

  • Lee, Sunghoon;Kang, Taewook;Kang, Hyeonwoo;Jeong, Yongseok;Kim, Jongsu;Heo, Hoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.437-442
    • /
    • 2019
  • Green $BaSi_2O_2N_2:0.02Eu^{2+}$ phosphor is synthesized through a two-step solid state reaction method. The first firing is for crystallization, and the second firing is for reduction of $Eu^{3+}$ into $Eu^{2+}$ and growth of crystal grains. By thermal analysis, the three-time endothermic reaction is confirmed: pyrolysis reaction of $BaCO_3$ at $900^{\circ}C$ and phase transitions at $1,300^{\circ}C$ and $1,400^{\circ}C$. By structural analysis, it is confirmed that single phase [$BaSi_2O_2N_2$] is obtained with Cmcm space group of orthorhombic structure. After the first firing the morphology is rod-like type and, after the second firing, the morphology becomes round. Our phosphor shows a green emission with a peak position of 495 nm and a peak width of 32 nm due to the $4f^65d^1{\rightarrow}4f^7$ transition of $Eu^{2+}$ ion. An LED package (chip size $5.6{\times}3.0mm$) is fabricated with a mixture of our green $BaSi_2O_2N_2$, and yellow $Y_3Al_5O_{12}$ and red $Sr_2Si_5N_8$ phosphors. The color rendering index (90) is higher than that of the mixture without our green phosphor (82), which indicates that this is an excellent green candidate for white LEDs with a deluxe color rendering index.

Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite using Deep Learning (딥러닝을 이용한 화강암 X-ray CT 영상에서의 균열 검출에 관한 연구)

  • Hyun, Seokhwan;Lee, Jun Sung;Jeon, Seonghwan;Kim, Yejin;Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.184-196
    • /
    • 2019
  • This study aims to extract a 3D image of micro-cracks generated by hydraulic fracturing tests, using the deep learning method and X-ray computed tomography images. The pixel-level cracks are difficult to be detected via conventional image processing methods, such as global thresholding, canny edge detection, and the region growing method. Thus, the convolutional neural network-based encoder-decoder network is adapted to extract and analyze the micro-crack quantitatively. The number of training data can be acquired by dividing, rotating, and flipping images and the optimum combination for the image augmentation method is verified. Application of the optimal image augmentation method shows enhanced performance for not only the validation dataset but also the test dataset. In addition, the influence of the original number of training data to the performance of the deep learning-based neural network is confirmed, and it leads to succeed the pixel-level crack detection.

A Basic Study on the Generation of Tire & Road Wear Particles by Differences in Tire Wear Performance (타이어 마모성능 차이에 의한 타이어 마모입자 생성에 관한 기초 연구)

  • Kang, Tae-Woo;Kim, Hyeok-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.561-568
    • /
    • 2021
  • In this study, in order to observe the change in the amount of Tire and Road Wear Particles and the ratio of tire components in it according to the tire wear resistance performance, carried out the evaluation by varying the vulcanization reaction design of the tire tread rubber. In addition, in order to improve the reliability of the evaluation of Tire and Road Wear Particles, the evaluation was performed indoor laboratory test equipment that simulates the condition on real driving to exclude various environmental influences including minerals, driver's habits, road surface, weather, tire structure and pattern designs. After the evaluation in closed space, it is estimated that the amount of collected Tire and Road Wear Particles is 84% compared to 100% of the tire and road wear loss weight, of which 96.4~97.7% was around the road and 2.3~3.6% was in the air. As a result of analy sis of the collected Tire and Road Wear particles, the tire component existed 63~75% in the Tire and Road Wear Particles depending on the wear resistance performance of the tire.

Success Factors Analysis of Chinese Large Scenario Experience Drama:'You Jian Ping-yao' (중국 대형정경체험극 '우견평요'의 성공요인 분석)

  • Wang, Yilun;Jang, Hyewon
    • 지역과문화
    • /
    • v.8 no.3
    • /
    • pp.27-48
    • /
    • 2021
  • In recent years, China's tourism performing art in a series of new completion of the project, increase the box office of tourism performing arts industry, higher economic income, at the same time led to the formation of brand of tourism performing arts and has a good reputation, with the regional culture, has a certain role in promoting economic development, including Large scenario experience drama is one of the key projects. Large scenario experience drama is a new form of drama that simulates the space design of real environment and enables the audience to have active experience in visual, auditory, smell, taste, touch and other senses with strong interactivity.Large scenario experience drama are adapted from traditional Chinese culture, regional culture and long-passed stories, and combine high technology such as lighting, sound effects, special effects and 3D effects to make the audience's experience more real.As the first Large scenario experience drama in China, 'You Jian Ping-yao' reflects the profound culture of Shanxi with new forms of expression and creative means, in the form of scene experience and make the audience more intuitive feel the 'Shanxi emotion', 'Shanxi sentiment' and 'Shanxi Morality', carry forward the traditional culture at the same time, also passed the Shanxi ancient and great values, strengthened the drama of China's movie village, impetus the development of the tourism industry in Shanxi, drive the Shanxi region of jingjing, gradually formed a complete industrial chain. However, there are also limitations such as improper plot connection and improper tourist management, which can improve the performance effect through more audience interaction and guidance. Therefore, it can be seen that large-scale situational experience dramas play a great role in promoting the dissemination of traditional culture and values, the development of tourism industry, the formation of regional brand characteristics and economic development. Through these, it can be seen that large-scale situational experience plays have enlightenments such as innovative thinking content, gradually forming an industrial chain closed-loop, and broadening publicity channels for the development of live-action performances.

Deep Neural Network Analysis System by Visualizing Accumulated Weight Changes (누적 가중치 변화의 시각화를 통한 심층 신경망 분석시스템)

  • Taelin Yang;Jinho Park
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.85-92
    • /
    • 2023
  • Recently, interest in artificial intelligence has increased due to the development of artificial intelligence fields such as ChatGPT and self-driving cars. However, there are still many unknown elements in training process of artificial intelligence, so that optimizing the model requires more time and effort than it needs. Therefore, there is a need for a tool or methodology that can analyze the weight changes during the training process of artificial intelligence and help out understatnding those changes. In this research, I propose a visualization system which helps people to understand the accumulated weight changes. The system calculates the weights for each training period to accumulates weight changes and stores accumulated weight changes to plot them in 3D space. This research will allow us to explore different aspect of artificial intelligence learning process, such as understanding how the model get trained and providing us an indicator on which hyperparameters should be changed for better performance. These attempts are expected to explore better in artificial intelligence learning process that is still considered as unknown and contribute to the development and application of artificial intelligence models.

Development and Characterization of Hafnium-Doped BaTiO3 Nanoparticle-Based Flexible Piezoelectric Devices (Hf 도핑된 BaTiO3 나노입자 기반의 플렉서블 압전 소자 개발 및 특성평가)

  • HakSu Jang;Hyeon Jun Park;Gwang Hyeon Kim;Gyoung-Ja Lee;Jae-Hoon Ji;Donghun Lee;Young Hwa Jung;Min-Ku Lee;Changyeon Baek;Kwi-Il Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.34-39
    • /
    • 2024
  • Energy harvesting technology that converts the wasted energy resources into electrical energy is emerging as a semipermanent power source for self-powered electronics and wireless low-power sensor systems. Among the various energy conversion techniques, flexible piezoelectric energy harvesters (f-PEHs), using materials with piezoelectric effects, have attracted significant interest because they can harvest a small mechanical energy into electrical signals without constraints of time and space in various environments. In this study, we used a flexible piezoelectric composite film fabricated by dispersing BaHfxTi(1-x)O3 (x = 0, 0.01, 0.05, 0.1) piezoelectric powders inside a polymeric matrix to facilitate f-PEHs. The fabricated f-PEH with optimal Hf contents (x = 0.05) generated a maximum output voltage of 0.95 V and current signal of 130 nA with stable electrical/mechanical disabilities under periodically bending deformations. In addition, we demonstrated a cantilever-type f-PEH and investigated its potential as a sensor by characterizing the output performance under mechanical vibrations at various frequencies. This study provides the breakthrough for realizing self-powered energy harvesting and sensing systems by adopting the lead-free piezoelectric composites under vibrational environments.

An Experimental Study to Predict the Concentration of Moving Tire and Road Wear Particles from Road to Ocean Environment (도로에서 해양 환경까지 이동하는 타이어 마모입자의 농도를 예측하기 위한 실험적 연구)

  • Tae-Woo Kang;Won-Hyun Ji
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.196-205
    • /
    • 2024
  • In this study, sample collection and quantification analysis of Tire and Road Wear Particles (TRWP) from the road surface were conducted to predict the amount of TRWP generated on the road surface moving by environmental compartment depending on rainfall intensity. Samples were collected from TRWP remaining on the road surface two days after the 3 days average rainfall (0-60 mm/day) occurred and the road surface was completely dry. Only TRWP were separated from the collected samples through size and density separation, and the difference in the content of TRWP remaining on the road surface after rainfall was based on the value of 60.2 g o f TRWP o n a day witho ut rain (0 mm/day). By calculating, it was co nfirmed that 0-49.4 g o f TRWP can mo ve to the environmental compartment depending on the intensity of rainfall. In addition, it was confirmed that when the rainfall intensity was 60 mm/day, the amount of TRWP moving to each environmental section was 3.75 times higher compared to 5 mm/day, and using the results of previous research, the total amount of TRWP that can be transported to the environmental compartment by rainfall from the domestic road environment annually is 9,592 tons, and 288 tons of this can be affected by marine microplastics. However, this study has limitations in terms of limited space and predicted results, but it would like to mention the need to improve the domestic road environment and sewage treatment system to reduce TRWP. In the future, we plan to conduct sample collection and concentration analysis studies of TRWP in real environmental compartments to verify the results of this study.

Crystal Structures of Fully Dehydrated $Ca^{2+}$-Exchanged Zeolite X, $Ca_{46}-X$, and $Ca^{2+}$ and $K^+$-Exchanged Zeolite X, $Ca_{32}K_{28}-X$ ($Ca^{2+}$ 이온으로 완전히 치환된 제올라이트 X, $Ca_{46}-X$$Ca^{2+}$ 이온과 $K^+$ 이온으로 치환된 제올라이트 X, $Ca_{32}K_{28}-X$를 완전히 진공 탈수한 결정구조)

  • Jang, Se Bok;Song, Seong Hwan;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.7-13
    • /
    • 1995
  • The crystal sructures of $X(Ca_{46}Al_{92}Si_{100}O_{384})$ and $Ca_{32}K_{28}-X(Ca_{32}K_{28}Al_{92}Si_{100}O_{384})$ dehydrated at $360^{\circ}C$ and $2{\times}10^{-6}$ Torr have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at $21(1)^{\circ}C.$ Their structures were refined to the final error indices, R_1=0.096,\;and\;R_2=0.068$ with 166 reflections, and R_1=0.078\;and\;R_2=0.056$ with 130 reflections, respectively, for which I > $3\sigma(I).$ In dehydrated $Ca_{48}-X,\;Ca^{2+}$ ions are located at two different sites opf high occupancies. Sixteen $Ca^{2+}$ ions are located at site I, the centers of the double six rings $(Ca(1)-O(3)=2.51(2)\AA$ and thirty $Ca^{2+}$ ions are located at site II, the six-membered ring faces of sodalite units in the supercage. Latter $Ca^{2+}$ ions are recessed $0.44\AA$ into the supercage from the three O(2) oxygen plane (Ca(2)-O(2)= $2.24(2)\AA$ and $O(2)-Ca(2)-O(2)=119(l)^{\circ}).$ In the structure of $Ca_{32}K_{28}-X$, all $Ca^{2+}$ ions and $K^+$ ions are located at the four different crystallographic sites: 16 $Ca^{2+}$ ions are located in the centers of the double six rings, another sixteen $Ca^{2+}$ ions and sixteen $K^+$ ions are located at the site II in the supercage. These $Ca^{2+}$ ions adn $K^+$ ions are recessed $0.56\AA$ and $1.54\AA$, respectively, into the supercage from their three O(2) oxygen planes $(Ca(2)-O(2)=2.29(2)\AA$, $O(2)-Ca(2)-O(2)=119(1)^{\circ}$, $K(1)-O(2)=2.59(2)\AA$, and $O(2)-K(1)-O(2)=99.2(8)^{\circ}).$ Twelve $K^+$ ions lie at the site III, twofold axis of edge of the four-membered ring ladders inside the supercage $(K(2)-O(4)=3.11(6)\AA$ and $O(1)-K(2)-O(1)=128(2)^{\circ}).$

  • PDF

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.