• Title/Summary/Keyword: 3D-Laser scanner

Search Result 280, Processing Time 0.026 seconds

A Study on the recognition of moving objects by segmenting 2D Laser Scanner points (2D Laser Scanner 포인트의 자동 분리를 통한 이동체의 구분에 관한 연구)

  • Lee Sang-Yeop;Han Soo-Hee;Yu Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.177-180
    • /
    • 2006
  • In this paper we proposed a method of automatic point segmentation acquired by 2D laser scanner to recognize moving objects. Recently, Laser scanner is noticed as a new method in the field of close range 3D modeling. But the majority of the researches are pointed on precise 3D modeling of static objects using expensive 3D laser scanner. 2D laser scanner is relatively cheap and can obtain 2D coordinate information of moving object's surface or can be utilized as 3D laser scanner by rotating the system body. In these reasons, some researches are in progress, which are adopting 2D laser scanner to robot control systems or detection of objects moving along linear trajectory. In our study, we automatically segmented point data of 2D laser scanner thus we could recognize each of the object passing through a section.

  • PDF

3D Boundary Extraction of A Building Using Terrestrial Laser Scanner (지상라이다를 이용한 건축물의 3차원 경계 추출)

  • Lee, In-Su
    • Spatial Information Research
    • /
    • v.15 no.1
    • /
    • pp.53-65
    • /
    • 2007
  • Terrestrial laser scanner provides highly accurate, 3D images and by sweeping a laser beam over a scene or object, the laser scanner is able to record millions of 3D points' coordinates in a short period, so becoming distinguished in various application fields as one of the representative surveying instruments. This study deals with 3D building boundary extraction using Terrestrial Laser Scanner. The results shows that high accuracy 3D coordinates for building boundaries are possibly acquired fast, but terrestrial laser scanner is a ground-based system, so "no roofs", and "no lower part of building" due to trees and electric-poles, etc. It is expected that the combination of total station, terrestrial laser scanner, airborne laser scanner with aerial photogrammetry will contribute to the acquisition of an effective 3D spatial information.

  • PDF

Multi-facet 3D Scanner Based on Stripe Laser Light Image (선형 레이저 광 영상기반 다면 3 차원 스캐너)

  • Ko, Young-Jun;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.811-816
    • /
    • 2016
  • In light of recently developed 3D printers for rapid prototyping, there is increasing attention on the 3D scanner as a 3D data acquisition system for an existing object. This paper presents a prototypical 3D scanner based on a striped laser light image. In order to solve the problem of shadowy areas, the proposed 3D scanner has two cameras with one laser light source. By using a horizontal rotation table and a rotational arm rotating about the latitudinal axis, the scanner is able to scan in all directions. To remove an additional optical filter for laser light pixel extraction of an image, we have adopted a differential image method with laser light modulation. Experimental results show that the scanner's 3D data acquisition performance exhibited less than 0.2 mm of measurement error. Therefore, this scanner has proven that it is possible to reconstruct an object's 3D surface from point cloud data using a 3D scanner, enabling reproduction of the object using a commercially available 3D printer.

Development of 3D Scanner Based on Laser Structured-light Image (레이저 구조광 영상기반 3차원 스캐너 개발)

  • Ko, Young-Jun;Yi, Soo-Yeong;Lee, Jun-O
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.186-191
    • /
    • 2016
  • This paper addresses the development of 3D data acquisition system (3D scanner) based laser structured-light image. The 3D scanner consists of a stripe laser generator, a conventional camera, and a rotation table. The stripe laser onto an object has distortion according to 3D shape of an object. By analyzing the distortion of the laser stripe in a camera image, the scanner obtains a group of 3D point data of the object. A simple semiconductor stripe laser diode is adopted instead of an expensive LCD projector for complex structured-light pattern. The camera has an optical filter to remove illumination noise and improve the performance of the distance measurement. Experimental results show the 3D data acquisition performance of the scanner with less than 0.2mm measurement error in 2 minutes. It is possible to reconstruct a 3D shape of an object and to reproduce the object by a commercially available 3D printer.

Road marking classification method based on intensity of 2D Laser Scanner (신호세기를 이용한 2차원 레이저 스캐너 기반 노면표시 분류 기법)

  • Park, Seong-Hyeon;Choi, Jeong-hee;Park, Yong-Wan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.313-323
    • /
    • 2016
  • With the development of autonomous vehicle, there has been active research on advanced driver assistance system for road marking detection using vision sensor and 3D Laser scanner. However, vision sensor has the weak points that detection is difficult in situations involving severe illumination variance, such as at night, inside a tunnel or in a shaded area; and that processing time is long because of a large amount of data from both vision sensor and 3D Laser scanner. Accordingly, this paper proposes a road marking detection and classification method using single 2D Laser scanner. This method road marking detection and classification based on accumulation distance data and intensity data acquired through 2D Laser scanner. Experiments using a real autonomous vehicle in a real environment showed that calculation time decreased in comparison with 3D Laser scanner-based method, thus demonstrating the possibility of road marking type classification using single 2D Laser scanner.

3D Reconstruction of Urban Building using Laser range finder and CCD camera

  • Kim B. S.;Park Y. M.;Lee K. H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.128-131
    • /
    • 2004
  • In this paper, we describe reconstructed 3D-urban modeling techniques for laser scanner and CCD camera system, which are loading on the vehicle. We use two laser scanners, the one is horizon scanner and the other is vertical scanner. Horizon scanner acquires the horizon data of building for localization. Vertical scan data are main information for constructing a building. We compared extraction of edge aerial image with laser scan data. This method is able to correct the cumulative error of self-localization. Then we remove obstacles of 3D-reconstructed building. Real-texture information that is acquired with CCD camera is mapped by 3D-depth information. 3D building of urban is reconstructed to 3D-virtual world. These techniques apply to city plan. 3D-environment game. movie background. unmanned-patrol etc.

  • PDF

A Study on Precision Measurement of Rock Joint Using 3D-Laser Scanner (3D-Laser scanner를 이용한 암반 절리의 정밀측정에 관한 연구)

  • 이승호;황영철;김세현;심석래;정태영
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.103-111
    • /
    • 2004
  • The existing methods that can be adopted for measuring joints involve either to use borehole or photogrammetry. Due to restricted space, acquisition of data in limited area, and measurement errors, above methods have limitations acquiring the objective and correct results. To get over defects of existing joint measurement methods, joints have been measured using 3D-Laser scanner with accuracy and efficiency. This research aims to investigate an accuracy and applicabiliy of 3D-Laser scanner for measuring rock slope joints. Measurement of rock slope joints has been executed using 3D-Laser scanner & clinometer and then, results from both methods are compared. Results from both methods indicate that they show nearly equal features for joint distributions and numbers of joint information obtained by 3D-Laser scanner are much more than ones measured using clinomer. Therefore, 3D-Laser scanner turns out to be very effective by the fact that it contributes to reduce investigation costs & periods, objectify data from rock slope joints.

The construction management of tunnel using 3D laser scanner (3차원 레이저 스캐너를 활용한 터널 시공관리)

  • Lee, Kang-Hyun;Heo, In-Wook;Kim, Do-Hoon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.159-176
    • /
    • 2011
  • A 3D laser scanner is widely used in various fields such as games, movies, medicines, art, design, etc. Many studies for utilizing the 3D laser scanner in the fields of civil engineering have also been carried out, for example, for systematically managing tunnel and/or bridge construction. However, since a software which is directly applicable to Korean construction system does not exist, the amount of data obtained from existing the 3D laser scanner is too much to handle in a systematic way. Therefore, in this paper, a new data processing technique was established which can rapidly and effectively treat the 3D laser scanning data. Moreover, a software that can systematically manage the tunnel construction was developed. The developed software can assess the construction quality of tunnel excavation such as under-break, over-break, cracks, leakage and efflorescence, etc. A 3D laser scanner and the developed software was applied to an in-situ tunnelling site, and verified usefulness of the 3D laser scanner. The developed software may be useful for tunnel maintenance as well as for systematic management of tunnel construction.

Measurement of Rock Slope Joint using 3D Image Processing (3차원 영상처리를 이용한 암반 사면의 절리 측정에 관한 연구)

  • Lee, Seung-Ho;Hwang, Jeong-Cheol;Sim, Seok-Rae;Jeong, Tae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.854-861
    • /
    • 2005
  • Studied accuracy and practical use possibility of joint measurement that using 3D laser scanner to rock slope. Measured joint of Rock slope and comparison applied 3 dimension laser scanner and clinometer. 3D laser scanning system preserves on computer calculating to 3 dimension coordinate scaning laser to object. and according to laser measurement method of interior, produce correct vector value from charge-coupled device(CCD) or laser reciver and telegram register and time measuring equipment. Create of object x, y, z point coordinates to 3 dimension space of computer. Such 3 dimension point datum (Point Clouds) forms relocate position informations that exist to practical space to computer space. Practical numerical values related between each other. Compared joint distribution and direction that measured by laser scanner and clinometer. By the result, Distribution of joint projected almost equally. Could get more joint datas by measurement of 3 dimension scanner than measured by clinometer. Therefore, There is effect that objectification of rock slope investigation data, shortening of investigation periods, investigation reduction of cost. could know that it is very effective method in joint measuring.

  • PDF

Engineering Construction With High-Precision Survey Equipment (3D laser scanner, 3D photo scanner, drone) (고정밀 측량장비(3D 레이저 스캐너, 3D 포토 스캐너, 드론)를 활용한 건축 시공단계의 엔지니어링 적용사례)

  • Krchung, Kwang-Ryang;Lee, Byoung-Do;Kim, Tae-Hyuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.133-134
    • /
    • 2019
  • As information and construction technology increases, the demand for sophisticated geometric design grows. Design of buildings is becoming more larger, higher, and complicated every day, requiring much new construction technology to bring the design into reality. Nonetheless, the speed of construction technology development is not as rapid. This study concerns the difficulties of realization of sophisticated geometric design. It aims to suggest using BIM and precision survey equipment during the construction stage of the project is a way to resolve. The study will list how to use BIM as an engineering platform incorporating a photo scanner, a scanner drone, and a 3D scanner in the construction stage of projects, how these progressive projects were able to benefit from the high-construction technology.

  • PDF