• Title/Summary/Keyword: 3D-HEVC

Search Result 50, Processing Time 0.02 seconds

Overview of Inter-Component Coding in 3D-HEVC (3D-HEVC를 위한 인터-컴포넌트 부호화 방법)

  • Park, Min Woo;Lee, Jin Young;Kim, Chanyul
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.545-556
    • /
    • 2015
  • A HEVC-compatible 3D video coding method (3D-HEVC) has been recently developed as an extension of the high efficiency video coding (HEVC) standard. In order to efficiently deal with the multi-view video plus depth (MVD) format, 3D-HEVC exploits an inter-component prediction which allows the prediction between texture and depth map images in addition to a temporal prediction used in the conventional single layer video coding such as H.264/AVC and HEVC. The performance of the inter-component prediction is normally affected by the accuracy of the disparity vector, and thus it is important to have an accurate disparity vector used for the inter-component prediction. This paper, therefore, introduces a disparity derivation method and inter-component algorithms using the disparity vector for the efficient 3D video coding. Simulation results show that the 3D-HEVC provides higher coding performance compared with the simulcast approach using HEVC and the simple multi-view extension (MH-HEVC).

Reusable HEVC Design in 3D-HEVC

  • Heo, Young Su;Bang, Gun;Park, Gwang Hoon
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.818-828
    • /
    • 2016
  • This paper proposes a reusable design for the merging process used in three-dimensional High Efficiency Video Coding (3D-HEVC), which can significantly reduce the implementation complexity by eliminating duplicated module redundancies. The majority of inter-prediction coding tools used in 3D-HEVC are utilized through a merge mode, whose extended merging process is based on built-in integration to completely wrap around the HEVC merging process. Consequently, the implementation complexity is unavoidably very high. To facilitate easy market implementation, the design of a legacy codec should be reused in an extended codec if possible. The proposed 3D-HEVC merging process is divided into the base merging process of reusing HEVC modules and reprocessing process of refining the existing processes that have been newly introduced or modified for 3D-HEVC. To create a reusable design, the causal and mutual dependencies between the newly added modules for 3D-HEVC and the reused HEVC modules are eliminated, and the ineffective methods are simplified. In an application of the proposed reusable design, the duplicated reimplementation of HEVC modules, which account for 50.7% of the 3D-HEVC merging process, can be eliminated while maintaining the same coding efficiency. The proposed method has been adopted as a normative coding tool in the 3D-HEVC international standard.

Design and Analysis of 3D Scalable Video Codec (3차원 스케일러블 비디오 코덱 설계 및 성능 분석)

  • Lee, Jae-Yung;Kim, Jae-Gon;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.219-236
    • /
    • 2016
  • In this paper, we design and implement a 3D scalable video codec by combining the Scalable HEVC (SHVC) and the 3D-HEVC which are the extended standards of High Efficiency Video Coding (HEVC). The proposed 3D scalable video codec supports the view and spatial scalabilities which are the properties of 3D-HEVC and SHVC, respectively. In the proposed 3D scalable codec, the high-level syntaxes are designed to support the multiple scalabilities. In the computer simulation section, we confirmed the conformance of the proposed codec and analyzed the performance of the proposed codec.

Coding Technique using Depth Map in 3D Scalable Video Codec (확장된 스케일러블 비디오 코덱에서 깊이 영상 정보를 활용한 부호화 기법)

  • Lee, Jae-Yung;Lee, Min-Ho;Chae, Jin-Kee;Kim, Jae-Gon;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.237-251
    • /
    • 2016
  • The conventional 3D-HEVC uses the depth data of the other view instead of that of the current view because the texture data has to be encoded before the corresponding depth data of the current view has been encoded, where the depth data of the other view is used as the predicted depth for the current view. Whereas the conventional 3D-HEVC has no other candidate for the predicted depth information except for that of the other view, the scalable 3D-HEVC utilizes the depth data of the lower spatial layer whose view ID is equal to that of the current picture. The depth data of the lower spatial layer is up-scaled to the resolution of the current picture, and then the enlarged depth data is used as the predicted depth information. Because the quality of the enlarged depth is much higher than that of the depth of the other view, the proposed scheme increases the coding efficiency of the scalable 3D-HEVC codec. Computer simulation results show that the scalable 3D-HEVC is useful and the proposed scheme to use the enlarged depth data for the current picture provides the significant coding gain.

A Design for Extension Codec based on Legacy Codec (레거시 코덱 기반 확장 코덱 설계)

  • Young, Su Heo;Bang, Gun;Park, Gwang Hoon
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.509-520
    • /
    • 2015
  • A design for the merge mode of three dimensional High Efficiency Video Coding (3D-HEVC) is proposed in this paper. The proposed design can reduce the implementation complexity by removing the duplicated modules of the HEVC. For the extension codec, the implementation complexity is as crucial as coding efficiency, meaning if possible, extension codec needs to be easily implemented through by reusing the design of the legacy codec as-is. However, the existing merging process of 3D-HEVC had been built-in integrated in the inside of the HEVC merging process. Thus the duplicated merging process of HEVC had to be fully re-implemented in the 3D-HEVC. Consequently the implementation complexity of the extension codec was very high. The proposed 3D-HEVC merge mode is divided into following two stages; the process to reuse the HEVC modules without any modification; and the reprocessing process for newly added and modified merging modules in 3D-HEVC. By applying the proposed method, the re-implemented HEVC modules, which accounted for 51.4% of 3D-HEVC merge mode confirmed through the operational analysis of algorithm, can be eliminated, while maintaining the same coding efficiency and computational complexity.

Simplified Depth Modeling in HEVC-based 3D Video Coding (HEVC-기반 3차원 비디오 부호화에서 깊이 모델링 간소화 방법)

  • Song, Yunseok;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.2 no.2
    • /
    • pp.28-32
    • /
    • 2013
  • In this paper, we present a method to reduce complexity of depth modeling modes (DMM) that are used in the current 3D-HEVC standardization. DMM adds four modes to the existing HEVC intra prediction modes for accurate object edge representation in the depth map. Especially, Mode 3 requires distortion calculation of numerous pre-defined wedgelets, inducing high complexity. The proposed method employs absolute differences of neighboring pixels in the sides of the reference block to find high intensity changing positions. Based on such positions, the number of wedgelet candidates is reduced to six and distortion calculation is skipped for irrelevant wedgelets. Experimental results show complexity reduction by 3.1% on average, while maintaining similar coding performance.

  • PDF

Performance analysis of the HEVC based 3DV Coding (HEVC 기반 3DV 부호화 성능 분석)

  • Park, Dae-Min;Son, So-Hee;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.214-215
    • /
    • 2014
  • 3차원 비디오 부호화를 위한 표준안을 제정하기 위해 국제 표준화 기구인 JCT-3V(Joint Collaborative Team on 3D Video Coding Extension Development)에서는 3차원 비디오 부호화기술에 대한 표준화가 진행되고 있다. 본 논문은 현재 JCT-3V에서 HEVC(High Efficiency Video Coding) 기반으로 표준화가 진행 중인 3D-HEVC 부호화 기술들에 대해 살펴보고 그 부호화 및 복잡도 성능을 분석하였다. 이러한 성능 분석은 향후 3D-HEVC 기술에 대한 알고리즘 개발을 위한 기술 선별 및 조정에 유용할 것으로 판단된다.

  • PDF

Overview and Performance analysis of the HEVC based 3D Video Coding (HEVC 기반 3차원 비디오 부호화 기법 성능 분석)

  • Park, Daemin;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.186-189
    • /
    • 2013
  • 최근 다양한 3D 콘텐츠들에 대한 사용자의 요구에 따라 HD(High Definition)화질 및 이를 넘어서는 고해상도(FHD(full high definition), UHD(ultra high definition))의 고품질 3D 방송 서비스에 대한 연구가 진행되고 있으며, 차세대 영상 기술로 주목되고 있는 3차원 비디오 기술은 사용자에게 실감 있는 영상을 제공할 수 있다, 하지만 많은 시점을 전부 촬영하는 것은 한계가 있으므로, 카메라의 깊이 정보를 이용하여, 전송하는 시점을 줄이고, 시점영상을 합성함으로써 사용하는 카메라의 수보다 더 많은 시점을 생성하는 방법이 필요하다. 현재 국제 표준화 기구인 MPEG(Moving Picture Experts Group)의 3차원 비디오 부호화(3D Video Coding, 3DVC)에서는 깊이영상을 가지는 3차원 비디오영상에 대한 효과적인 부호화 기술들에 대해 표준화가 진행되고 있다. 이에 본 논문은 HEVC 기반의 3D-HEVC에서 사용하는 표준 기술들에 대하여 소개하고, 현재 사용되고 있는 기술들에 대한 성능 평가를 분석 하였다.

  • PDF

Simplified DC Calculation Method for Simplified Depth Coding Mode of 3D High Efficiency Video Coding

  • Jo, Hyunho;Lee, Jin Young;Choi, Byeongdoo;Sim, Donggyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.139-143
    • /
    • 2014
  • This paper proposes a simplified DC calculation method for simplified depth coding (SDC) mode of 3D High Efficiency Video Coding (3D-HEVC) to reduce the computational complexity. For the computational complexity reduction, the current reference software of 3D-HEVC employs reference samples sub-sampling method. However, accumulation, branch, and division operations are still utilized and these operations increase computational complexity. The proposed method calculates DC value without those operations. The experimental results show that the proposed method achieves 0.1% coding gain for synthesized views in common test condition (CTC) with the significantly reduced number of computing operations.

Performance Analysis of 3D-HEVC Video Coding (3D-HEVC 비디오 부호화 성능 분석)

  • Park, Daemin;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.713-725
    • /
    • 2014
  • Multi-view and 3D video technologies for a next generation video service are widely studied. These technologies can make users feel realistic experience as supporting various views. Because acquisition and transmission of a large number of views require a high cost, main challenges for multi-view and 3D video include view synthesis, video coding, and depth coding. Recently, JCT-3V (joint collaborative team on 3D video coding extension development) has being developed a new standard for multi-view and 3D video. In this paper, major tools adopted in this standard are introduced and evaluated in terms of coding efficiency and complexity. This performance analysis would be helpful for the development of a fast 3D video encoder as well as a new 3D video coding algorithm.