• Title/Summary/Keyword: 3D-D registration

Search Result 311, Processing Time 0.021 seconds

Developing methodology of 3D Cadaster Feature Model using Cadastre Process Analysis (지적 업무 분석을 기반으로 한 3차원 지적 항목 모델 개발 방법)

  • You, Hee Min;Jeong, Dong Hoon;Lee, Ji Yeong
    • Spatial Information Research
    • /
    • v.21 no.3
    • /
    • pp.55-69
    • /
    • 2013
  • In the modern society, as the city grows and constructive technology gradually develops, land usage has been sophisticated and three-dimensionalized. Consequently, issues such as property ownership and legal claim over ground and underground space have been triggered, which disclose the problems of using two-dimensional cadastral management system. Numerous researches on building three-dimensional cadastral are ongoing such as defining the right relationship of land space and providing the registration and management scheme so as to solve the imminent matter. It is the chief aim of this study to increase efficiency by analyzing the vocational practices through adding on necessary sections and properties for current registration to original research work. If three-dimensional cadastral management system is once constructed, highly qualified services for citizens will be available by providing accurate land related information swiftly, which can result in inevitable improvement of efficiency at work. Hence, this thesis will suggest the internationally suitable feature model development method in terms of standardization by probing into the factual profession to derive each attributes and properties that are related to three-dimensional cadastral and affix them to the classified item requisites of initial research studies.

Open Source-Based Surgical Navigation for Fracture Reduction of Lower Limb (오픈소스 기반 수술항법장치의 하지 골절수술 응용검토)

  • Joung, Sanghyun;Park, Jaeyeong;Park, Chul-Woo;Oh, Chang-Wug;Park, Il Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.497-503
    • /
    • 2014
  • Minimally invasive intramedullary nail insertion or plate osteosynthesis has shown good results for the treatment of long bone fractures. However, directly seeing the fracture site is impossible; surgeons can only confirm bone fragments through a fluoroscopic imaging system. The narrow field of view of the equipment causes malalignment of the fracture reduction, and radiation exposure to medical staff is inevitable. This paper suggests two methods to solve these problems: surgical navigation using 3D models reconstructed from computed tomography (CT) images to show the real positions of bone fragments and estimating the rotational angle of proximal bone fragments from 2D fluoroscopic images. The suggested methods were implemented using open-source code or software and evaluated using a model bone. The registration error was about 2 mm with surgical navigation, and the rotation estimation software could discern differences of $2.5^{\circ}$ within a range of $15^{\circ}$ through a comparison with the image of a normal bone.

Long-term shape sensing of bridge girders using automated ROI extraction of LiDAR point clouds

  • Ganesh Kolappan Geetha;Sahyeon Lee;Junhwa Lee;Sung-Han Sim
    • Smart Structures and Systems
    • /
    • v.33 no.6
    • /
    • pp.399-414
    • /
    • 2024
  • This study discusses the long-term deformation monitoring and shape sensing of bridge girder surfaces with an automated extraction scheme for point clouds in the Region Of Interest (ROI), invariant to the position of a Light Detection And Ranging system (LiDAR). Advanced smart construction necessitates continuous monitoring of the deformation and shape of bridge girders during the construction phase. An automated scheme is proposed for reconstructing geometric model of ROI in the presence of noisy non-stationary background. The proposed scheme involves (i) denoising irrelevant background point clouds using dimensions from the design model, (ii) extracting the outer boundaries of the bridge girder by transforming and processing the point cloud data in a two-dimensional image space, (iii) extracting topology of pre-defined targets using the modified Otsu method, (iv) registering the point clouds to a common reference frame or design coordinate using extracted predefined targets placed outside ROI, and (v) defining the bounding box in the point clouds using corresponding dimensional information of the bridge girder and abutments from the design model. The surface-fitted reconstructed geometric model in the ROI is superposed consistently over a long period to monitor bridge shape and derive deflection during the construction phase, which is highly correlated. The proposed scheme of combining 2D-3D with the design model overcomes the sensitivity of 3D point cloud registration to initial match, which often leads to a local extremum.

Medical Image Processing System for Morphometric and Functional Analysis of a Human Brain (인간 뇌의 형태적 및 기능적 분석을 위한 의료영상 처리시스템)

  • Kim, Tae-U
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.977-991
    • /
    • 2000
  • In this paper, a medical image processing system was designed and implemented for morphometric and functional analysis of a human brain. The system is composed of image registration, ROI(region of interest) analysis, functional analysis, image visualization, 3D medical image database management system(DBMS), and database. The software processes an anatomical and functional image as input data, and provides visual and quantitative results. Input data and intermediate or final output data are stored to the database as several data types by the DBMS for other further image processing. In the experiment, the ROI analysis, for a normal, a tumor, a Parkinson's decease, and a depression case, showed that the system is useful for morphometric and functional analysis of a human brain.

  • PDF

Resampling Method to Improve Performance of Point Cloud Registration (포인트 클라우드 정합 성능 향상을 위한 리샘플링 방법)

  • Kim, Jongwook;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.187-189
    • /
    • 2020
  • 본 논문에서는 포인트 클라우드 정합 성능 향상을 위해 기하적 복잡도가 낮은 정점들의 영향을 최소화하는 포인트 클라우드 리샘플링 방법을 제안한다. 3 차원 특징 기술자(3D feature descriptor)를 기반으로 하는 포인트 클라우드 정합은 정점 법선 벡터의 변화량을 특징으로 사용한다. 따라서 강건한 특징은 대부분 정점 법선 벡터의 변화량이 큰 영역에서 추출된다. 반면에 정점 법선 벡터의 변화량이 거의 없는 평면 영역은 정합 수행 시에 이상점(outlier)으로 작용할 수 있으므로 해당 정점들이 정합 과정에 미치는 영향을 최소화해야 한다. 제안하는 방법은 모델 포인트 클라우드의 기하적 복잡도를 고려한 리샘플링을 통해 전체 정점의 수 대비 복잡도가 낮은 정점들의 비율을 낮추어 이상점이 정합 과정에 미치는 영향을 최소화하고 정합 성능을 향상시켰다.

  • PDF

A Progressive Rendering Method to Enhance the Resolution of Point Cloud Contents (포인트 클라우드 콘텐츠 해상도 향상을 위한 점진적 렌더링 방법)

  • Lee, Heejea;Yun, Junyoung;Kim, Jongwook;Kim, Chanhee;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.258-268
    • /
    • 2021
  • Point cloud content is immersive content that represents real-world objects with three-dimensional (3D) points. In the process of acquiring point cloud data or encoding and decoding point cloud data, the resolution of point cloud content could be degraded. In this paper, we propose a method of progressively enhancing the resolution of sequential point cloud contents through inter-frame registration. To register a point cloud, the iterative closest point (ICP) algorithm is commonly used. Existing ICP algorithms can transform rigid bodies, but there is a disadvantage that transformation is not possible for non-rigid bodies having motion vectors in different directions locally, such as point cloud content. We overcome the limitations of the existing ICP-based method by registering regions with motion vectors in different directions locally between the point cloud content of the current frame and the previous frame. In this manner, the resolution of the point cloud content with geometric movement is enhanced through the process of registering points between frames. We provide four different point cloud content that has been enhanced with our method in the experiment.

Accuracy of Bite Registration Using Intraoral Scanner Based on Data Trimming Strategy for Fremitus Teeth

  • Jeong, Yuwon;Shim, June-Sung;Kim, Jee-Hwan;Kim, Jong-Eun;Lee, Hyeonjong
    • Journal of Korean Dental Science
    • /
    • v.15 no.1
    • /
    • pp.61-67
    • /
    • 2022
  • Purpose: This study aimed to evaluate the accuracy of bite registration using intraoral scanner based on data trimming strategy for fremitus teeth. Materials and Methods: A reference model was designed by Medit Model Builder software (MEDIT Corp., Seoul). Tooth number 24 and 25 were separated as dies and tooth number 26 was prepared for full-coverage crown. Those were printed using a 3D printer (NextDent 5100). The scanning procedure was performed by a single trained operator with one intraoral scanner (i700; MEDIT Corp.). The scanning groups were divided as follows: group 1 (G1), no fremitus; group 2 (G2), 0.5 mm buccal fremitus in the maxillary left first and second premolar; and group 3 (G3), 1.5 mm buccal fremitus in the maxillary left first and second premolar. Each group was scanned 10 times and were analyzed using the reference model data. Surface-based occlusal clearance was analyzed at the prepared tooth to evaluate accuracy. Result: Mean values of control group (G1) were 1.587±0.021 mm. G2 showed similar values to those from the control group (1.580±0.024 mm before trimming strategy and 1.588±0.052 mm after trimming strategy). G3 showed significantly greater values (1.627±0.025 mm before trimming strategy and 1.590±0.024 mm after trimming strategy) and the differences were found between trimming strategy (P=0.004). Conclusion: Bite trimming strategy for fremitus teeth is a reliable technique to reduce inaccuracies caused by the mobility at maximum intercuspation.

Factors influencing commercialization of government SME R&D project: effect of patent and certification (정부지원 중소기업 R&D 프로젝트의 사업화 성과 영향요인 분석: 인증과 특허의 영향을 중심으로)

  • Lee, Cheol-Ju;Lee, Kangtaek;Shin, Juneseuk
    • Journal of Technology Innovation
    • /
    • v.20 no.3
    • /
    • pp.229-253
    • /
    • 2012
  • There has been various government SME R&D programs and the increase of budget which amount to 15.8% CAGR over the last 10 years, in order to support the research and development of SMEs which accounts for over 99% of our nation's total number of companies. To investigate the factors which affect the ROI of the Government R&D project for SMEs, we conducted Tobit and Logistic regression analysis on the 1237 projects of 'Technology Innovation Program for SME' which is one of the major programs of the Korea Small and Medium Business Administration. The empirical results of this study are as follows. Application or registration of patent or certification while performing the project, positively affect the financial performance of the government R&D project. And we can also find that, according to the technology field, patent and certification have a markedly different effect on ROI of the project. The results of this study suggest that planning, evaluation, and managing of government SME R&D project should be performed with the consideration of the effect of patent and certification on the economic performance, according to the technology field of the project.

  • PDF

Registration of Three-Dimensional Point Clouds Based on Quaternions Using Linear Features (선형을 이용한 쿼터니언 기반의 3차원 점군 데이터 등록)

  • Kim, Eui Myoung;Seo, Hong Deok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.175-185
    • /
    • 2020
  • Three-dimensional registration is a process of matching data with or without a coordinate system to a reference coordinate system, which is used in various fields such as the absolute orientation of photogrammetry and data combining for producing precise road maps. Three-dimensional registration is divided into a method using points and a method using linear features. In the case of using points, it is difficult to find the same conjugate point when having different spatial resolutions. On the other hand, the use of linear feature has the advantage that the three-dimensional registration is possible by using not only the case where the spatial resolution is different but also the conjugate linear feature that is not the same starting point and ending point in point cloud type data. In this study, we proposed a method to determine the scale and the three-dimensional translation after determining the three-dimensional rotation angle between two data using quaternion to perform three-dimensional registration using linear features. For the verification of the proposed method, three-dimensional registration was performed using the linear features constructed an indoor and the linear features acquired through the terrestrial mobile mapping system in an outdoor environment. The experimental results showed that the mean square root error was 0.001054m and 0.000936m, respectively, when the scale was fixed and if not fixed, using indoor data. The results of the three-dimensional transformation in the 500m section using outdoor data showed that the mean square root error was 0.09412m when the six linear features were used, and the accuracy for producing precision maps was satisfied. In addition, in the experiment where the number of linear features was changed, it was found that nine linear features were sufficient for high-precision 3D transformation through almost no change in the root mean square error even when nine linear features or more linear features were used.

Three-dimensional analysis of soft and hard tissue changes after mandibular setback surgery in skeletal Class III patients (골격성 3급 부정교합 환자의 하악골 후퇴술 시행후 안모변화에 대한 3차원적 연구)

  • Park, Jae-Woo;Kim, Nam-Kug;Kim, Myung-Jin;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.35 no.4 s.111
    • /
    • pp.320-329
    • /
    • 2005
  • The three-dimensional (3D) changes of bone, soft tissue and the ratio of soft tissue to bony movement was investigated in 8 skeletal Class III patients treated by mandibular setback surgery. CT scans of each patient at pre- and post-operative states were taken. Each scan was segmented by a threshold value and registered to a universal three-dimensional coordinate system, consisting of an FH plane, a mid-sagittal plane, and a coronal plane defined by PNS. In the study, the grid parallel to the coronal plane was proposed for the comparison of the changes. The bone or soft tissue was intersected by the projected line from each point on the gird. The coordinate values of intersected point were measured and compared between the pre- and post-operative models. The facial surface changes after setback surgery occurred not only in the mandible, but also in the mouth corner region. The soft tissue changes of the mandibular area were measured relatively by the proportional ratios to the bone changes. The ratios at the mid-sagittal plane were $77\~102\%(p<0.05)$. The ratios at all other sagittal planes had similar patterns to the mid-sagittal plane, but with decreased values. And, the changes in the maxillary region were calculated as a ratio, relative to the movement of a point representing a mandibular movement. When B point was used as a representative point, the ratios were $14\~29\%$, and when Pog was used, the ratios were $17\~37\%(9<0.05)$. In case of the 83rd point of the grid, the ratios were $11\~22\%(p<0.05)$.