• Title/Summary/Keyword: 3D-CFD

Search Result 673, Processing Time 0.032 seconds

Characteristics of the In-cylinder Flow and Fuel Behavior with Respect to Engine Temperature Condition in the MPI Dual Injection Engine (MPI Dual Injection 엔진의 온도 조건 변화에 따른 엔진 내부 유동 및 연료 거동 특성에 관한 연구)

  • Lee, Seung Yeob;Chung, Jin Taek;Park, Young Joon;Yu, Chul Ho;Kim, Woo Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.210-219
    • /
    • 2014
  • The MPI dual injection engine can enhance the fuel efficiency and engine power. By using one injector per one intake port, MPI dual injection engine has an excellent fuel atomization and targeting injection. As the basic research for the MPI Dual injection engine design, this research was investigated in order to understand the characteristic of the in-cylinder flow and fuel behavior according to engine temperature condition and the fuel type in the MPI dual injection engines. The 3D unsteady CFD simulation for the MPI Dual injection engine was performed using STAR-CD. The engine operating condition was 2,000 rpm/WOT. The parameters for this study were fuel types, fuel temperatures and wall temperatures. As a result, the intake air amount, evaporated fuel in the cylinder and the fuel film on the wall were presented according to parameters that depend on the fuel properties and engine wall temperature. Also, the results were influenced by in-cylinder flow such as the intake flow, back flow and so on.

Dependence of Explosion Overpressure of Flammable Gas on the Change of Volume Blockage Ratio of Facilities (설비 혼잡도에 따른 가연성 증기운의 폭발과압의 변화)

  • Lee, Seung Kuk;Lee, Da Eun;Kim, Sung Chan;Yoon, Kee Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.54-61
    • /
    • 2015
  • A series of CFD calculation has been conducted to investigate the effect of facility confinement on explosion power for process plant facility. The level of confinement of a facility was simplified with VBR(volume blockage ratio) and averaged size of obstacles. FLACS which is 3D CFD code of gas dispersion and the explosion was used for simulating the explosion phenomena in the idealized domain with different confinement level. The CFD results showed a tendency that the overpressure increases with increasing VBR and number of obstacles. The effect of VBR on the overpressure was relatively small for the case of number of obstacle less than 25. The results of this study can be used to provide a safety guideline considering the facility confinement in case of leakage accident of flammable gas and vapor in process plants.

2-D & 3-D Calculations for the Effect of Guide Vane of Impulse Turbine

  • Hyun Beom-Soo;MOON Jae-Seung;Hong Sung-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.235-240
    • /
    • 2004
  • This paper deals with the performance analysis of impulse turbine for owe type wave energy conversion device. Numerical analysis was performed using a commercially-available software FLUENT. This parametric study includes the variation of the setting angle of guide vane. Since parametric study at various flaw coefficients requires tremendous amounts of computing time, two-dimensional cascade flaw approximation was employed to find out optimum principal particulars in rather simple manner. Full three-dimensional calculation was also performed for several cases to confirm the validity of two-dimensional approach. Results were compared to other experimental data, for instance Setoguchi et al (2001)'s extensive set of data, and found to be well demonstrating the usefulness of 2-D analysis. Advantages and disadvantages of each method were also evaluated.

  • PDF

Design Study of Engine Inlet Duct for Measurement Improvement of the Flow Properties on AIP (AIP면 유동측정 정확도 향상을 위한 가스터빈엔진 입구덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sung Don;Kim, Yong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.49-55
    • /
    • 2017
  • In this study, gas turbine engine inlet duct was designed to satisfy uniform flow at aerodynamic interface plane (AIP). Haack-series was selected as nose cone profile and duct outer radius($r_o$) was designed to satisfy to match with area change rate between the nose cone and outer duct wall by the 1-D sizing. The design object of the inlet duct wall profile which has the gradual area change rate was uniform Mach number in the core flow region and minimum boundary later thickness at the both inner nose wall and outer duct wall. The flow characteristics inside the inlet duct was evaluated using CFD. The static pressure distribution at the AIP showed uniform pattern within 0.16%. Based on Mach number profile, the boundary layer thickness was 2% of channel height. Kiel temperature rake location was decided less than 100 mm in front of nose cone where the Mach number is less than 0.1 in order to maximize the temperature probe recovery rate.

Application of CFD model for the design of settling basin inlet structure (침전지 유입부 설계를 위한 CFD모형의 적용)

  • Yu Chang Hwan;Lee Jong Hyun;Kim Dae Geun;Kim Nam Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1083-1087
    • /
    • 2005
  • 하수처리장의 침전지는 고형물(SS)을 침전, 제거하여 하수를 정화하는 시설로서 생물학적처리에 의해 발생하는 슬러지와 처리수를 분리하는 것을 주목적으로 한다. 장방형침전지의 경우, 유입된 하수가 침전지의 전 단면에 걸쳐 균일하게 도달하게 하기 위하여 $6\~20\%$ 정도의 유공율을 가진 유공정류벽을 설치하며 유효 침전구역에서의 유속은 0.08 m/sec 이하가 되도록 설계되어야 한다. 지금까지 침전지 유입부의 설계시에는 상기 설계기준만을 참조하여 설계가 진행되고 있는 실정으로 보다 나은 대안을 도출하기 위한 분석은 미흡한 실정이다. 본 연구에서는 3차원 수치모형인 FLOW-3D를 이용하여 침전지의 유입부 설계를 위한 설계인자를 도출하였다. 특히 유공정류벽의 크기, 위치 유공율에 따라서 유입하수의 수리적인 특성을 3차원적으로 분석하였다. 저류벽의 위치에 따른 유량의 분배효과를 검토하기 위하여 저류벽의 폭, W를 2.4 m로 고정하고 유입부에서 저류벽까지의 거리, L을 1.5 m, 2.0 m, 2.5 m로 변화시키며 수치모의를 수행하였다. 그리고 저류벽의 폭에 따른 유량의 분배효과를 검토하기 위하여 L을 고정하고 W를 변화시키며 수치모의를 수행하였다. 유공정류벽의 유공율에 따른 유량의 연직 분배효과를 검토하기 위하여 유공율을 변화시키며 연직위치별 통과유량을 산정하였다 각 모의조건에 대한 통과유량 산정결과, 유공율이 $7\%$일때 통과유량의 표준편차가 가장 작게 발생하며, 유공율이 $7\%$보다 감소하거나 증가하면 표준편차가 증가하고 있음을 알 수 있다. 본 연구에서는 상용 CFD모형인 FLOW-3D를 계획 중인 하수처리장의 침전지 유입부 설계에 적용하였으며 저류벽의 위치와 폭, 유공정류벽의 유공율에 따른 유입하수의 분배효과를 분석하였다. 실험을 수행하여 보다 정밀한 공식으로 개선할 수 있었다.$10,924m^3/s$ 및 $10,075m^3/s$로서 실험 I의 $2,757m^3/s$에 비해 통수능이 많이 개선되었음을 알 수 있다.함을 알 수 있다. 상수관로 설계 기준에서는 관로내 수압을 $1.5\~4.0kg/cm^2$으로 나타내고 있는데 $6kg/cm^2$보다 과수압을 나타내는 경우가 $100\%$로 밸브를 개방하였을 때보다 $60\%,\;80\%$ 개방하였을 때가 더 빈번히 발생하고 있으므로 대상지역의 밸브 개폐는 $100\%$ 개방하는 것이 선계기준에 적합한 것으로 나타났다. 밸브 개폐에 따른 수압 변화를 모의한 결과 밸브 개폐도를 적절히 유지하여 필요수량의 확보 및 누수방지대책에 활용할 수 있을 것으로 판단된다.8R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며 $10\% 경사일 때를 기준으로 $Ro(mm)=Ro_{10}{\times}0.797{\times}e^{-0.021s(\%)}$로 나타났다.천성 승모판 폐쇄 부전등을 초래하는 심각한 선천성 심질환이다. 그러나 진단 즉시 직접 좌관상동맥-대동맥 이식술로 수술적 교정을 해줌으로써 좋은 성적을 기대할 수 있음을 보여주었다.특히 교사들이 중요하게 인식하는 해방적 행동에 대한 목표를 강조

  • PDF

Numerical Investigation on Experiment for Passive Containment Cooling System (피동 원자로건물 냉각계통 실험에 관한 수치적 연구)

  • Ha, Hui Un;Suh, Jung Soo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.96-104
    • /
    • 2020
  • The numerical simulations were conducted to investigate the thermal-fluid phenomena occurred inside the experimental apparatus during a PCCS, used to remove heat released in accidents from a containment of light water nuclear power plant, operation. Numerical simulations of the flow and heat transfer caused by wall condensation inside the containment simulation vessel (CSV), which equipped with 18 vertical heat exchanger tubes, were conducted using the commercial computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the wall condensation model were used for turbulence closure and wall condensation, respectively. The simulation using the actual size of the apparatus. However, rather than simulating the whole experimental apparatus in consideration of the experimental cases, calculation resources, and calculation time, the simulation model was prepared only in CSV. Selective simulation was conducted to verify the effects of non-condensable gas(NC gas) concentration, CSV internal pressure, and wall sub-cooling conditions. First, as a result of the internal flow of CSV, it was observed that downward flow due to condensation occurred surface of the vertical tube and upward flow occurred in the distant place. Natural convection occurred actively around the heat exchanger tube. Due to this rising and falling internal flow, natural circulation occurred actively around the heat exchanger tubes. Next, in order to check the performance of built-in condensation model using according to the non-condensable gas concentration, CSV internal flow and wall sub-cooling, the heat flux values were compared with the experimental results. On average, the results were underestimated with and error of about 25%. In addition, the influence of CSV internal pressure and wall sub-cooling was small, but when the condensate was highly generated due to the low non-condensable gas concentration, the error was large compared to the experimental values. This is considered to be due to the nature of the condensation model of the CFX code. However, in spite of the limitations of CFD, it is valid to use the built-in condensation model of CFD for PCCS performance prediction from a conservative perspective.

3-Dimensional Analysis of Temperature Distribution in Transformer (변압기 3차원 온도분포 해석)

  • Song, K.D.;Lee, W.Y.;Oh, Y.H.;Kim, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.86-88
    • /
    • 1999
  • An analysis of temperature distribution in transformer is necessary for cooling design. But, it is very difficult to make that analysis because of the complicated structure of transformer. Particulary. if it is asymmetry, 3 dimensional analysis is required. This paper presents the 3-dimensional analysis technique of temperature distribution in transformer using a commercial CFD program FLUENT and the applied results in a simple model.

  • PDF

STUDY ON 3-D VIRTUAL REALITY FOR STEREOSCOPIC VISUALIZATION OF FLOW FIELD DATA (유동장 데이터의 입체적 가시화를 위한 3-D 가상현실 기법의 적용)

  • Ha, J.H.;Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.347-351
    • /
    • 2010
  • In this paper, our effort to apply 3-D Virtual Reality system for stereoscopic visualization of flow data is briefly described. This study is an extension of our previous and on-going research efforts to develop DATA(Data Analysis and Visualization Application) program, which is a data visualization program developed by using Qt as GUI development environment and OpenGL as graphic library. The program is developed upon the framework of object-oriented programming and it was originally developed by using Qt 3.3.3 environment. In this research the program is converted into a Qt 4.3.3-compatible version, and this new version is developed on Visual Studio 2005. And to achieve a stereoscopic viewing capability, two graphic windows are used to render its own viewing image for the lift and right eye respectively. These two windows are merged into one image using 3D monitor and the viewers can see the data visualization results with stereoscopic depth effects by using polarizing glasses. In this paper three dimensional data visualization with stereoscopic technique combined with 3D Monitor is demonstrated, and the current achievement would be a good start-up for further development of low-cost high-quality stereoscopic data visualization system.

  • PDF

A Numerical Study of 3-D Flows in Spiral Tubes with Square Cross-Section (Spiral Tube 내에서의 3차원 유동 해석)

  • Hur Nahmkeon;Kim Seongwon
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • Spiral tube heat exchangers can find numerous applications in many engineering fields. Flow in spiral tubes is interest to engineers due to occurrence of secondary flow which enhances the cross-sectional mixing and the heat transfer rate. In the present study, an incompressible viscous 3-D flow in spiral tubes with rectangular cross-section of various torsion rate and Reynolds number is studied by using a finite volume method. It is shown that the axial velocity profile is affected by the secondary flow motion. Because there is some difference from correlation proposed by Hur et al., a lot of analysis and arrangement of experimental results are needed. This study showed the results of variation of hydrodynamic entry length for torsion and Re numbers.

  • PDF

A Study on the Development of General Purpose Program for the Analysis of 3-D Fluid Flow by Using a General non-Orthogonal Grid System (일반 비직교좌표계를 사용하는 3차원 범용 유동해석 프로그램의 개발)

  • 허남건;조원국;김광호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3345-3356
    • /
    • 1994
  • A general purpose program, TURBO-3D, for the analysis of 3-D fluid flow in complex geometry has been developed, which employs a standard $k-\varepsilon$ turbulence model and a general nonorthogonal grid system. For the purpose of verification of the program and testing the applicability, turbulent flows in an S-shaped diffuser and turbulent flows over an backward facing step are solved and compared with the earlier results. Comparison with the results by the STAR-CD program has been also made for the same flow configuration and grid structure. The agreements are excellent and hence the program has been verified. Since the present program is applicable only on limited flow phenomena and lacks the pre-and post processor, further improvements toward these directions are being made.