• Title/Summary/Keyword: 3D-CAD

Search Result 1,190, Processing Time 0.033 seconds

A study on the Analysis of Building Information Modeling Factors of Construction Firms Using an Analytic Hierarchy Process (계층분석법을 이용한 BIM(Building Information Modeling)이 건설사에 미치는 영향요인 분석에 관한 연구)

  • Shim, Jin Kyu;Yi, Hye In;Kim, Jae Jun
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.123-130
    • /
    • 2010
  • A lot of construction companies in overseas markets of construction try to change 2D CAD to 3D CAD for improving business ability and change to Building Information Modeling(BIM) for integrating information produced from construction life cycle. In America, GSA(General Service Administration) requires a design drawing planed by BIM and in Singapore and Europe, the government encourages architectures to use this tool. Recently in the domestic market, many organizations related construction industry are aware of importance of 3D CAD integrated information, and try to use BIM. Therefore, this research would analyze how does BIM affect construction industry and derive influence factors and provide basic data for using BIM.

A Study on the Possibility of 2D Design Drawing Implementation by Revit Architecture (Revit Architecture를 이용한 2D 설계도면 구현 가능성에 관한 연구)

  • Cho, Yong-Sang;Lee, Heewon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5243-5250
    • /
    • 2013
  • BIM(Building Information Modeling) enables 3D model-base management for all information produced by construction project during its life cycle. Also as a national policy, BIM has been institutionalized as design criteria. But, on the matter of 2D drawing using BIM software (Revit Architecture), it has been recognized as difficult to realize the same quality drawing drawn by CAD. The purpose of this study is verifying the possibility of printable design drawing implemented by BIM software at the same quality of 2D shop drawing drawn by 2D CAD. Through the analysis of basic design elements of 3D BIM software and 2D CAD software, with the case of partial cross sectional drawing which is most faithful representation of the basic design elements, this study find out that the 3D BIM software can produce the same quality 2D printable drawing utilizing its implicit function.

Jewelry Design Automization using a 3D CAD (3차원 CAD를 활용한 주얼리 원본 자동화 연구)

  • 고지연;송오성;류지호;신성호
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.95-99
    • /
    • 2001
  • We can embody a variable size of high classic industrial material. and jewelry design within 5 hours. using a rapid prototype 3D CAD, which includes 30 kinds of database selected by jewelry designers. If the jewelry can be investigated and the customer can modify it right away ; then the qualify of the jewelry is much better. Based on our investigation. we can reduce 30$\%$ of the development cost by using a standard database. We can also create a new design with complex design element in the database. Therefore, we may reduce the production time to less than 5 hours by using a Powerful technique system rather than producing hand-made jewelry, which can take more than 27 hours.

  • PDF

CAD Model Generation from Point Clouds using 3D Grid Method (Grid 방법을 이용한 측정 점데이터로부터의 CAD모델 생성에 관한 연구)

  • 우혁제;강의철;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.435-438
    • /
    • 2001
  • Reverse engineering technology refers to the process that creates a CAD model of an existing part using measuring devices. Recently, non-contact scanning devices have become more accurate and the speed of data acquisition has increased drastically. However, they generate thousands of points per second and various types of point data. Therefore, it becomes a major issue to handle the huge amount and various types of point data. To generate a CAD model from scanned point data efficiently, these point data should be well arranged through point data handling processes such as data reduction and segmentation. This paper proposes a new point data handling method using 3D grids. The geometric information of a part is extracted from point cloud data by estimating normal values of the points. The non-uniform 3D grids for data reduction and segmentation are generated based on the geometric information. Through these data reduction and segmentation processes, it is possible to create CAD models autmatically and efficiently. The proposed method is applied to two quardric medels and the results are discussed.

  • PDF

Design Support Based on 3D-CAD System using functional Space Surrounding Design Object (설계대상물의 외부공간을 이용한 3차원 CAD 시스템에 의한 설계지원)

  • Nahm, Yoon-Eui;Ishikawa, Haruo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.102-110
    • /
    • 2009
  • Concurrent Engineering(CE) has presented new possibilities for successful product development by incorporating various product life-cycle functions from the earlier stage of design. In the product design, geometric representation is vital not only in its traditional role as a means of communicating design information but also in its role as a means of externalizing designer's thought process by visualizing the design product. During the last dozens of years, there has been extraordinary development of computer-aided tools intended to generate, present or communicate 3D models. However, there has not been comparable progress in the development of 3D-CAD systems intended to represent and manipulate a variety of product life-cycle information in a consistent manner. This paper proposes a novel concept, Minus Volume (MV), to incorporate various design information relevant to product lift-cycle functions. MV is a functional shape that is extracted from a design object within a bounding box. A prototype 3D-CAD system is implemented based on the MV concept and illustrated with the successful implementation of concurrent design and manufacturing.

Collaborative Design based on 3D-CAD System Using Functional Space Surrounding Design Object over the Networked Environment (네트워크 분산 환경 하에서 설계대상물의 외부공간을 이용한 3차원 CAD 시스템에 의한 협조설계 지원)

  • Nahm, Yoon-Eui;Ishikawa, Haruo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.169-177
    • /
    • 2009
  • Concurrent Engineering (CE) has presented new possibilities for successful product development by incorporating various product life-cycle functions from the earlier stage of design. In the product design, geometric representation is vital not only in its traditional role as a means of communicating design information but also in its role as a means of externalizing designer's thought process by visualizing the design product. During the last dozens of years, there has been extraordinary development of computer-aided tools intended to generate, present or communicate 3D models. However, there has not been comparable progress in the development of 3D-CAD systems intended to represent and manipulate a variety of product life-cycle information in a consistent manner. In the previous research, the authors proposed a novel concept called Minus Volume (MV) to incorporate various design information relevant to product life-cycle functions. This paper proposes the use of the MV concept for the collaborative design environment, where many team members are geographically distributed over the networked environment, including Internet, Intranet, WWW, etc. A prototype 3D-CAD system is implemented based on the MV concept and illustrated with the successful implementation of collaborative design example.

Fabrication of complete denture using 3D printing: a case report (3D 프린팅을 이용한 양악 총의치 제작 증례)

  • Lee, Eunsu;Park, Chan;Yun, Kwidug;Lim, Hyun-Pil;Park, Sangwon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.2
    • /
    • pp.202-210
    • /
    • 2022
  • Recently with the advance in digital dentistry, the fabrication of dentures using computer-aided design and computer-aided manufacturing (CAD-CAM) is on the rise. The denture designed through a CAD software can be produced in a 3-dimensional manufacturing process. This process includes a subtractive processing method such as milling and an additive processing method such as 3D printing and in which it can be applied efficiently in more complex structures. In this case, complete dentures were fabricated using Stereolithography (SLA)-based 3D printing to shorten the production time and interval of visits in patient with physical disabilities due to cerebral infarction. For definitive impression, the existing interim denture was digitally replicated and used as an individual tray. The definitive impression obtained with polyvinyl siloxane impression material was including information about the inclination and length of the maxillary anterior teeth, vertical dimension, and centric relation. In addition, facial scan data with interim denture was obtained so that it can be used as a reference in determination of the occlusal plane and in arrangement of artificial teeth during laboratory work. Artificial teeth were arranged through a CAD program, and a gingival festooning was performed. The definitive dentures were printed by SLA-based 3D printer using a FDA-approved liquid photocurable resin. The denture showed adequate retention, support, and stability, and results were satisfied functionally and aesthetically.

Documentation of the History of Ok-Cheon Catholic Church by standardized 2D CAD and 3D Digital Modeling (표준화된 2D CAD와 3D Digital Modeling을 이용한 옥천천주교회의 연혁 기록)

  • Kim, Myung-Sun;Choi, Soon-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.523-528
    • /
    • 2011
  • Ok-Cheon catholic church has been changed 4 times since it's first construction in 1955. Prior three changes were small ones of windows, doors, roof finish etc. but the last alteration was the extension of it's plan from 一 shape to long cross shape and along with it the size, structure and form of it changed. This history of the church has not been recorded in drawing but only in text with indistinct features not documented. This study makes a new 2D CAD files using layers matched the changes and 3D digital models, these have not only present information but also change informations of the church. They are useful data for effective management, conservation restoration or possible reuse of it.

Analysis of Georeferencing Accuracy in 3D Building Modeling Using CAD Plans (CAD 도면을 활용한 3차원 건축물 모델링의 Georeferencing 정확도 분석)

  • Kim, Ji-Seon;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.117-131
    • /
    • 2007
  • Representation of building internal space is an active research area as the need for more geometrically accurate and visually realistic increases. 3 dimensional representation is common ground of research for disciplines such as computer graphics, architectural design and engineering and Geographic Information System (GIS). In many cases CAD plans are the starting point of reconstruction of 3D building models. The main objectives of building reconstruction in GIS applications are visualization and spatial analysis. Hence, CAD plans need to be preprocessed and edited to adapt to the data models of GIS SW and then georeferenced to enable spatial analysis. This study automated the preprocessing of CAD data using AutoCAD VBA (Visual Basic Application), and the processed data was topologically restructured for further analysis in GIS environment. Accuracy of georeferencing CAD data was also examined by comparing the results of coordinate transformation by using digital maps and GPS measurements as the sources of ground control points. The reconstructed buildings were then applied to visualization and network modeling.

A Study on Implementation of 3D CAD Library for Injection Mold Base and Mold Components (사출금형 몰드베이스와 몰드 금형 부품의 3차원 CAD라이브러리 구축에 관한 연구)

  • Lee, Cheol-Soo;Park, Gwang-Ryeol;Kim, Yong-Hoon
    • IE interfaces
    • /
    • v.12 no.3
    • /
    • pp.480-486
    • /
    • 1999
  • Mold base design is one of the most critical steps in production of plastic parts. This paper presents an efficient method for generating a 3D CAD library for injection mold base and mold components. In this paper, a new description language (DL)formats are proposed. These DL formats can represent the geometric feature, the variable dimensions and the assembly structures of mold base and its components. And the processes of adding the mold components and creating the mold assemblies can be performed very easily and efficiently by using DL scripts. Proposed method has been tested by implementation of 3D library with DL scripts and DL-interpreter with C language. The DL and interpreter are independent of CAD system. They were applied to the automatic mold base designing system which works on Unigraphics V15. The system is developed with UG API function under Windows-NT environment.

  • PDF