• Title/Summary/Keyword: 3D wind-induced effects

Search Result 21, Processing Time 0.011 seconds

Numerical analysis of a long-span bridge response to tornado-like winds

  • Hao, Jianming;Wu, Teng
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.459-472
    • /
    • 2020
  • This study focused on the non-synoptic, tornado-like wind-induced effects on flexible horizontal structures that are extremely sensitive to winds. More specifically, the nonuniform, intensive vertical wind-velocity and transient natures of tornado events and their effects on the global behavior of a long-span bridge were investigated. In addition to the static part in the modeling of tornado-like wind-induced loads, the motion-induced effects were modeled using the semi-empirical model with a two-dimensional (2-D) indicial response function. Both nonlinear wind-induced static analysis and linear aeroelastic analysis in the time domain were conducted based on a 3-D finite-element model to investigate the bridge performance under the most unfavorable tornado pattern considering wind-structure interactions. The results from the present study highlighted the important effects due to abovementioned tornado natures (i.e., nonuniform, intensive vertical wind-velocity and transient features) on the long-span bridge, and hence may facilitate more appropriate wind design of flexible horizontal structures in the tornado-prone areas.

3-D wind-induced effects on bridges during balanced cantilever erection stages

  • Schmidt, Stefan;Solari, Giovanni
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.1-22
    • /
    • 2003
  • Nowadays balanced cantilever construction plays an essential role as a sophisticated erection technique of bridges due to its economical and ecological advantages. Experience teaches that wind has a great importance with regard to this construction technique, but methods proposed by codes to take wind effects into account are still rather crude and, in most cases, completely lacking. Also research in this field is quite limited and aimed at studying only the longitudinal shear and the torque at the pier base, caused by the mean wind velocity and by the longitudinal turbulence actions over the deck. This paper advances the present solutions by developing a new procedure that takes into account all wind effects both on the deck and on the pier. The proposed model assumes the mean wind velocity as orthogonal to the bridge plane and considers the effects produced by all the three turbulence components and by the vortex shedding. The applications point out the role of each loading component on different bridge configurations and show that disregarding the presence of some effects may imply oversimplified results and relevant underestimations.

Wind tunnel tests of 3D wind loads on tall buildings based on torsional motion-induced vibrations

  • Zou, Lianghao;Xu, Guoji;Cai, C.S.;Liang, Shuguo
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.231-251
    • /
    • 2016
  • This paper presents the experimental results of the wind tunnel tests for three symmetric, rectangular, tall building models on a typical open terrain considering the torsional motion-induced vibrations. The time histories of the wind pressure on these models under different reduced wind speeds and torsional amplitudes are obtained through the multiple point synchronous scanning pressure technique. Thereafter, the characteristics of both the Root Mean Square (RMS) coefficients and the spectra of the base shear/torque in the along-wind, across-wind, and torsional directions, respectively, are discussed. The results show that the RMS coefficients of the base shear/torque vary in the three directions with both the reduced wind speeds and the torsional vibration amplitudes. The variation of the RMS coefficients in the along-wind direction results mainly from the change of the aerodynamic forces, but sometimes from aeroelastic effects induced by torsional vibration. However, the variations of the RMS coefficients in the across-wind and torsional directions are caused by more equal weights of both the aerodynamic forces and the aeroelastic effects. As such, for the typical tall buildings, the modification of the aerodynamic forces in the along-wind, across-wind, and torsional directions, respectively, and the aeroelastic effects in the across-wind and torsional directions should be considered. It is identified that the torsional vibration amplitudes and the reduced wind speeds are two significant parameters for the aerodynamic forces on the structures in the three directions.

Aspects of the dynamic wind-induced response of structures and codification

  • Tamura, Yukio;Kareem, Ahsan;Solari, Giovanni;Kwok, Kenny C.S.;Holmes, John D.;Melbourne, William H.
    • Wind and Structures
    • /
    • v.8 no.4
    • /
    • pp.251-268
    • /
    • 2005
  • This paper describes the work of the International Association for Wind Engineering Working Group E -Dynamic Response, one of the International Codification Working Groups set up at the Tenth International Conference on Wind Engineering in Copenhagen. Comparisons of gust loading factors and wind-induced responses of major codes and standards are first reviewed, and recent new proposals on 3-D gust loading factor techniques are introduced. Then, the combined effects of along-wind, crosswind and torsional wind load components are discussed, as well as the dynamic characteristics of buildings. Finally, the mathematical forms of along-wind velocity spectra for along-wind response calculation and codification of acceleration criteria are discussed.

Effects of turbulence intensity and exterior geometry on across-wind aerodynamic damping of rectangular super-tall buildings

  • Quan, Y.;Cao, H.L.;Gu, M.
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.185-209
    • /
    • 2016
  • Across-wind aerodynamic damping ratios are identified from the wind-induced acceleration responses of 15 aeroelastic models of rectangular super-high-rise buildings in various simulated wind conditions by using the random decrement technique. The influences of amplitude-dependent structural damping ratio and natural frequency on the estimation of the aerodynamic damping ratio are discussed and the identifying method for aerodynamic damping is improved at first. Based on these works, effects of turbulence intensity $I_u$, aspect ratio H/B, and side ratio B/D on the across-wind aerodynamic damping ratio are investigated. The results indicate that turbulence intensity and side ratio are the most important factors that affect across-wind aerodynamic damping ratio, whereas aspect ratio indirectly affects the aerodynamic damping ratio by changing the response amplitude. Furthermore, empirical aerodynamic damping functions are proposed to estimate aerodynamic damping ratios at low and high reduced speeds for rectangular super-high-rise buildings with an aspect ratio in the range of 5 to 10, a side ratio of 1/3 to 3, and turbulence intensity varying from 1.7% to 25%.

Numerical study on the mitigation of rain-wind induced vibrations of stay cables with dampers

  • Li, Shouying;Wu, Teng;Li, Shouke;Gu, Ming
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.615-639
    • /
    • 2016
  • Although the underlying mechanism of rain-wind induced vibrations (RWIVs) of stay cables has not been fully understood, some countermeasures have been successfully applied to mitigating this kind of vibration. Among these, installing dampers near the bridge deck was widely adopted, and several field observations have shown its effectiveness. In this study, the effectiveness of dampers to RWIVs of stay cables is numerically investigated comprehensively by means of finite difference method (FDM). Based on the free vibration analysis of a taut string, it is found that the 3-points triangle scheme, which can be easily implemented in FDM, can offer an excellent approximation of the concentrated damping coefficient (expressed as a Dirac delta function) at the location where the damper is installed. Then, free vibration analysis of a 3-D continuous stay cable attached with two dampers is carried out to study the relationship of modal damping ratio and damping coefficient of the dampers. The effects of orientation of the dampers and cable sag on the modal damping ratio are investigated in detail. Finally, the RWIV response of a 3-D continuous stay cable attached with two dampers is examined. The results indicate that 0.5% of damping ratio is sufficient to reduce the RWIV vibration of the Cable A20 on the No.2 Nanjing Bridge over Yangtze River.

3D Numerical investigation of a rounded corner square cylinder for supercritical flows

  • Vishwanath, Nivedan;Saravanakumar, Aditya K.;Dwivedi, Kush;Murthy, Kalluri R.C.;Gurugubelli, Pardha S.;Rajasekharan, Sabareesh G.
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.55-66
    • /
    • 2022
  • Tall buildings are often subjected to steady and unsteady forces due to external wind flows. Measurement and mitigation of these forces becomes critical to structural design in engineering applications. Over the last few decades, many approaches such as modification of the external geometry of structures have been investigated to mitigate wind-induced load. One such proven geometric modification involved the rounding of sharp corners. In this work, we systematically analyze the impact of rounded corner radii on the reducing the flow-induced loading on a square cylinder. We perform 3-Dimensional (3D) simulations for high Reynolds number flows (Re=1 × 105) which are more likely to be encountered in practical applications. An Improved Delayed Detached Eddy Simulation (IDDES) method capable of capturing flow accurately at large Reynolds numbers is employed in this study. The IDDES formulation uses a k-ω Shear Stress Transport (SST) model for near-wall modelling that prevents mesh-induced separation of the boundary layer. The effects of these corner modifications are analyzed in terms of the resulting variations in the mean and fluctuating components of the aerodynamic forces compared to a square cylinder with no geometric changes. Plots of the angular distribution of the mean and fluctuating coefficient of pressure along the square cylinder's surface illustrate the effects of corner modifications on the different parts of the cylinder. The windward corner's separation angle was observed to decrease with an increase in radius, resulting in a narrower and longer recirculation region. Furthermore, with an increase in radius, a reduction in the fluctuating lift, mean drag, and fluctuating drag coefficients has been observed.

Wake-induced vibration of the hanger of a suspension bridge: Field measurements and theoretical modeling

  • Li, Shouying;Deng, Yangchen;Lei, Xu;Wu, Teng;Chen, Zhengqing
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.169-180
    • /
    • 2019
  • The underlying mechanism of the wind-induced vibration of the hangers of the suspension bridges is still not fully understood at present and hence is comprehensively examined in this study. More specifically, a series of field measurements on the No. 2 hanger of the Xihoumen Bridge was first carefully conducted. Large amplitude vibrations of the hanger were found and the oscillation amplitude of the leeward cable was obviously larger than that of the windward cables. Furthermore, the trajectory of the leeward cable was close to an ellipse, which agreed well with the major characteristics of wake-induced vibration. Then, a theoretical model for the wake-induced vibration based on a 3-D continuous cable was established. To obtain the responses of the leeward cable, the finite difference method (FDM) was adopted to numerically solve the established motion equation. Finally, numerical simulations by using the structural parameters of the No. 2 hanger of the Xihoumen Bridge were carried out within the spatial range of $4{\leq}X{\leq}10$ and $0{\leq}Y{\leq}4$ with a uniform interval of ${\Delta}X={\Delta}Y=0.25$. The results obtained from numerical simulations agreed well with the main features obtained from the field observations on the Xihoumen Bridge. This observation indicates that the wake-induced vibration might be one of the reasons for the hanger oscillation of the suspension bridge. In addition, the effects of damping ratio and windward cable movement on the wake-induced vibration of the leeward cable were numerically investigated.

Influence of turbulence modeling on CFD simulation results of tornado-structure interaction

  • Honerkamp, Ryan;Li, Zhi;Isaac, Kakkattukuzhy M.;Yan, Guirong
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.131-146
    • /
    • 2022
  • Tornadic wind flow is inherently turbulent. A turbulent wind flow is characterized by fluctuation of the velocity in the flow field with time, and it is a dynamic process that consists of eddy formation, eddy transportation, and eddy dissipation due to viscosity. Properly modeling turbulence significantly increases the accuracy of numerical simulations. The lack of a clear and detailed comparison between turbulence models used in tornadic wind flows and their effects on tornado induced pressure demonstrates a significant research gap. To bridge this research gap, in this study, two representative turbulence modeling approaches are applied in simulating real-world tornadoes to investigate how the selection of turbulence models affects the simulated tornadic wind flow and the induced pressure on structural surface. To be specific, LES with Smagorinsky-Lilly Subgrid and k-ω are chosen to simulate the 3D full-scale tornado and the tornado-structure interaction with a building present in the computational domain. To investigate the influence of turbulence modeling, comparisons are made of velocity field and pressure field of the simulated wind field and of the pressure distribution on building surface between the cases with different turbulence modeling.

The Fairing Effects on Aerodynamic Stability of $\pi$-type Sections ($\pi$형 단면의 내풍안정성에 미치는 페어링 효과에 관한 연구)

  • Kim, Hee-Duck
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.113-116
    • /
    • 2006
  • In this paper, the fairing effects on the aerodynamics stability of basic plate-girder sections are investigated trough wind tunnel tests. As basis sections, two types of $\pi$-type shape sections with aspect ratios(D/B) of 1/5 and 1/10 are employed as the basic sections. And three types of triangular fairings are applied such as right-angled triangle(F1), inverted right-angled triangle(F2) and regular triangle(F3). The effects of attack angle on the dynamic response of each section are also investigated. As the results of experiments, fairings F2 is most effective to suppress flutter phenomenon or vortex induced vibration among three types of fairings.

  • PDF