• Title/Summary/Keyword: 3D vision

Search Result 929, Processing Time 0.027 seconds

The Study about Measuring Method in Radius of Eyeglasses Lens Curvature by using Keratometer (각막곡률계를 이용한 안경렌즈 곡률반경 측정방법에 관한 연구)

  • Cha, Jung Won
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.127-133
    • /
    • 2012
  • Perpose: The aim of this study is to investigate the measuring method in radius of eyeglasses lens curvature by using keratometer in noncontact method. Methods: A trial lens for vision test in diopter range from -9.00 D to -11.50 D were attached in front part of keratometer, after that we set eyeglasses lens at the place where eyeglasses lens is apart about 25 cm from front position of keratometer. We measured the radius of curvature from observation of clear mire image while the position of eyeglasses lens is changed in a small quantity. After that, we made some formulas for compensation of radius of curvature by using spherometer. Results: The radius of curvature was successfully measured by keratometer with trial lens in front part of it. The measured radius of curvature was changed to compensation value using spherometer data, and the 5 kind of linear equation to make compensation value was made. Any kind of lenses measured by using keratometer that trial lens was attached in front part of it, after that it was confirmed that the result of calculation from line equation is exact in error ratio below 3.5%. Conclusions: It was confirmed that radius of eyeglasses lens curvature can be measured by using keratometer by noncontact method, and the accuracy is higher than "lens measure".

Analysis of Convergent Influence of Job Seeking Stress, Hopelessness and Depression on Childbirth Perception among Some College Women (일부 여대생의 취업스트레스, 무망감 및 우울이 출산인식에 미치는 융복합적 영향 분석)

  • Kim, Seung-Hee;Bae, Sang-Yun
    • Journal of Digital Convergence
    • /
    • v.14 no.9
    • /
    • pp.389-397
    • /
    • 2016
  • This study investigates convergent influence on childbirth perception and its association with job seeking stress, depression and hopelessness among some college women. The survey was administered to 531 college women in Jeonbuk area from March 28th to April 29th, 2016. The structured self-administered questionaries were used. The childbirth perception of respondents according to general characteristics turned out to be significantly higher in following groups: that of old age, that of religion, that of school life satisfaction, that of non drinker. The childbirth perception are significantly higher in higher job seeking stress group, moderate & severe hopeless group and moderate & major depression group. The childbirth perception was positively correlated with job seeking stress, hopelessness and depression. With the analysis of covariance structure, we could confirm relationship among the four factors such as job seeking stress, hopelessness, depression and childbirth perception. Job seeking stress was more influential on the childbirth perception than hopelessness and depression. The results are expected to be useful for health education to increase the positive thinking of childbirth perception of the college women. In the following study, the analysis about additional factors of convergent influence on childbirth perception will be needed.

Implementation of Digital Light Drawing System based on Stereo Vision (스테레오 비전 기반 Light Drawing 시스템 구현)

  • Park, Won-Bae;Park, Chang-Bum;Paik, Doo-Won
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.130-137
    • /
    • 2010
  • Light Drawing is a photographic technique which exposures are made at night or in a darkened room usually by moving a hand-held light source[1]. Due to the limitations of equipment and environment, users having difficulty in drawing a picture in 3D space. If user take a light drawing, they need a camera that have function and darkened environment. Alternative solution is that we can make a light drawing picture by using the computer drawing tool as in Photoshop. Nevertheless, this solution will let the User lose their interest in drawing because this solution cannot synchronize between the real action of human hand motion and the electronic input devices such as mouse and keyboard. This paper proposed a digital content that can make light drawing easier. We used a digital content that will facility Light Drawing easier. We can measure the light spot position by using the stereo camera. Based on the measured position of the light spot, we reproduce light drawing in virtual space by using drawing effect method.

A Hardware Design of Feature Detector for Realtime Processing of SIFT(Scale Invariant Feature Transform) Algorithm in Embedded Systems (임베디드 환경에서 SIFT 알고리즘의 실시간 처리를 위한 특징점 검출기의 하드웨어 구현)

  • Park, Chan-Il;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.86-95
    • /
    • 2009
  • SIFT is an algorithm to extract vectors at pixels around keypoints, in which the pixel colors are very different from neighbors, such as vertices and edges of an object. The SIFT algorithm is being actively researched for various image processing applications including 3D image reconstructions and intelligent vision system for robots. In this paper, we implement a hardware to sift feature detection algorithm for real time processing in embedded systems. We estimate that the hardware implementation give a performance 25ms of $1,280{\times}960$ image and 5ms of $640{\times}480$ image at 100MHz. And the implemented hardware consumes 45,792 LUTs(85%) with Synplify 8.li synthesis tool.

The Performance Analysis and Design of Selling Spectacle Lenses in Domestic Market (국내 시판 안경렌즈의 성능 분석 및 설계)

  • Kim, Se-Jin;Lim, Hyeon-Seon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.4
    • /
    • pp.355-360
    • /
    • 2010
  • Purpose: Analysis performance for spectacle lens which sales in domestic market and optimization design a spectacle lens which is corrected aberration. Methods: Measured center thickness, radius and aspherical surface coefficient for spherical and aspherical lenses which were ${\pm}$5.00D. Refractive index for every lens was 1.6 and they came from 4 different companies. I used 3 types of equipment to measure lenses. ID-F150 (Mitutoyo) : Center Thickness, FOCOVISION (SR-2, Automation Robotics) : Radius, PGI 1240S (Taylor Hobson) : Aspherical surface coefficient. Designed a lens which had 27 mm of distance from lens rear surface to center of eye, 4 mm of pupil diameter and small aberration on center vision $30^{\circ}C$. To shorten axial distance compared with the measured lens rise merits for cosmetic. Lens Design tool was CODE V (Optical Research Associates). Results: -5.00D aspherical lens had somewhat high astigmatism and distortion compared with the spherical lens. But it had a merit for cosmetic because of short axial height and decrease edge thickness. Improved a performance of distortion and ascertain merits for cosmetic due to short axial height and decrease edge thickness same as (-) lens in case of +5.00 aspherical lens. Though an optimization process front surface aspherical lens had a good performance for astigmatism and distortion and the merit for beauty compared with measured spherical lens. Conclusions: Design trend for domestic aspherical lens is decrease axial height and thickness to increase a merit for cosmetic not but increase performance of aberration. From design theory for optimization design front surface aspherical spectacle lens which has improved performance of aberration and merit for cosmetic at the same time compared with the measured lens. Expect an improved performance from design back aspherical lens compared with front aspherical lens.

Boundary Depth Estimation Using Hough Transform and Focus Measure (허프 변환과 초점정보를 이용한 경계면 깊이 추정)

  • Kwon, Dae-Sun;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.78-84
    • /
    • 2015
  • Depth estimation is often required for robot vision, 3D modeling, and motion control. Previous method is based on the focus measures which are calculated for a series of image by a single camera at different distance between and object. This method, however, has disadvantage of taking a long time for calculating the focus measure since the mask operation is performed for every pixel in the image. In this paper, we estimates the depth by using the focus measure of the boundary pixels located between the objects in order to minimize the depth estimate time. To detect the boundary of an object consisting of a straight line and a circle, we use the Hough transform and estimate the depth by using the focus measure. We performed various experiments for PCB images and obtained more effective depth estimation results than previous ones.

Object detection within the region of interest based on gaze estimation (응시점 추정 기반 관심 영역 내 객체 탐지)

  • Seok-Ho Han;Hoon-Seok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.3
    • /
    • pp.117-122
    • /
    • 2023
  • Gaze estimation, which automatically recognizes where a user is currently staring, and object detection based on estimated gaze point, can be a more accurate and efficient way to understand human visual behavior. in this paper, we propose a method to detect the objects within the region of interest around the gaze point. Specifically, after estimating the 3D gaze point, a region of interest based on the estimated gaze point is created to ensure that object detection occurs only within the region of interest. In our experiments, we compared the performance of general object detection, and the proposed object detection based on region of interest, and found that the processing time per frame was 1.4ms and 1.1ms, respectively, indicating that the proposed method was faster in terms of processing speed.

Accelerometer-based Gesture Recognition for Robot Interface (로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식)

  • Jang, Min-Su;Cho, Yong-Suk;Kim, Jae-Hong;Sohn, Joo-Chan
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.53-69
    • /
    • 2011
  • Vision and voice-based technologies are commonly utilized for human-robot interaction. But it is widely recognized that the performance of vision and voice-based interaction systems is deteriorated by a large margin in the real-world situations due to environmental and user variances. Human users need to be very cooperative to get reasonable performance, which significantly limits the usability of the vision and voice-based human-robot interaction technologies. As a result, touch screens are still the major medium of human-robot interaction for the real-world applications. To empower the usability of robots for various services, alternative interaction technologies should be developed to complement the problems of vision and voice-based technologies. In this paper, we propose the use of accelerometer-based gesture interface as one of the alternative technologies, because accelerometers are effective in detecting the movements of human body, while their performance is not limited by environmental contexts such as lighting conditions or camera's field-of-view. Moreover, accelerometers are widely available nowadays in many mobile devices. We tackle the problem of classifying acceleration signal patterns of 26 English alphabets, which is one of the essential repertoires for the realization of education services based on robots. Recognizing 26 English handwriting patterns based on accelerometers is a very difficult task to take over because of its large scale of pattern classes and the complexity of each pattern. The most difficult problem that has been undertaken which is similar to our problem was recognizing acceleration signal patterns of 10 handwritten digits. Most previous studies dealt with pattern sets of 8~10 simple and easily distinguishable gestures that are useful for controlling home appliances, computer applications, robots etc. Good features are essential for the success of pattern recognition. To promote the discriminative power upon complex English alphabet patterns, we extracted 'motion trajectories' out of input acceleration signal and used them as the main feature. Investigative experiments showed that classifiers based on trajectory performed 3%~5% better than those with raw features e.g. acceleration signal itself or statistical figures. To minimize the distortion of trajectories, we applied a simple but effective set of smoothing filters and band-pass filters. It is well known that acceleration patterns for the same gesture is very different among different performers. To tackle the problem, online incremental learning is applied for our system to make it adaptive to the users' distinctive motion properties. Our system is based on instance-based learning (IBL) where each training sample is memorized as a reference pattern. Brute-force incremental learning in IBL continuously accumulates reference patterns, which is a problem because it not only slows down the classification but also downgrades the recall performance. Regarding the latter phenomenon, we observed a tendency that as the number of reference patterns grows, some reference patterns contribute more to the false positive classification. Thus, we devised an algorithm for optimizing the reference pattern set based on the positive and negative contribution of each reference pattern. The algorithm is performed periodically to remove reference patterns that have a very low positive contribution or a high negative contribution. Experiments were performed on 6500 gesture patterns collected from 50 adults of 30~50 years old. Each alphabet was performed 5 times per participant using $Nintendo{(R)}$ $Wii^{TM}$ remote. Acceleration signal was sampled in 100hz on 3 axes. Mean recall rate for all the alphabets was 95.48%. Some alphabets recorded very low recall rate and exhibited very high pairwise confusion rate. Major confusion pairs are D(88%) and P(74%), I(81%) and U(75%), N(88%) and W(100%). Though W was recalled perfectly, it contributed much to the false positive classification of N. By comparison with major previous results from VTT (96% for 8 control gestures), CMU (97% for 10 control gestures) and Samsung Electronics(97% for 10 digits and a control gesture), we could find that the performance of our system is superior regarding the number of pattern classes and the complexity of patterns. Using our gesture interaction system, we conducted 2 case studies of robot-based edutainment services. The services were implemented on various robot platforms and mobile devices including $iPhone^{TM}$. The participating children exhibited improved concentration and active reaction on the service with our gesture interface. To prove the effectiveness of our gesture interface, a test was taken by the children after experiencing an English teaching service. The test result showed that those who played with the gesture interface-based robot content marked 10% better score than those with conventional teaching. We conclude that the accelerometer-based gesture interface is a promising technology for flourishing real-world robot-based services and content by complementing the limits of today's conventional interfaces e.g. touch screen, vision and voice.

The Change in Refractive Powers of Soft Contact Lenses Caused by the Deposition of Tear Proteins (누액 단백질 침착에 의한 소프트콘택트렌즈의 굴절력 변화)

  • Choi, Jin-Yong;Park, Jae-Sung;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.4
    • /
    • pp.383-390
    • /
    • 2011
  • Purpose: The present study was conducted to investigate whether refractive powers of soft contact lenses were induced by the deposition of tear proteins when wearing soft contact lenses. Methods: The soft contact lenses (material: etafilcon A, hilafilcon A and comfilcon A) with refractive powers of -1.00 D, -3.00 D, -5.00 D and -7.00 D were incubated in artificial tear for 1 day, 3 days, 5 days, 7 days and 14 days, respectively. After incubation, their refractive powers were measured by wet cell method with an auto-lens meter and their protein deposited on the lenses was determined by the method of Lowry. Results: Among three types of soft contact lenses, the most protein deposition was detected in ionic etafilcon A lens material and significant change of its refractive power was manifested. In other words, refractive powers of etafilcon A lenses firstly decreased after 1 day incubation in artificial tear and then gradually increased with increasing incubation period again. The observed change in refractive powers of all diopters of etafilcon A material was beyond the scope of standard error and bigger in the lens with lower optical power. On the other hand, non-ionic hilafilcon A showed less protein deposition as much as about 20% in etafilacon A and statistically significant increase of refractive powers with increasing incubation period in artificial tear. The change in refractive power of hilafilcon A was also beyond the scope of the standard of error when incubating in artificial tear and greater in the lens with lower diopter. The least protein deposit was shown in silicone hydrogel lens material, comfilcon A as approximately 10% of it in etafilcon A, indicating less change in refractive power within the standard range of error. Conclusions: The large change of refractive powers that was beyond the scope of standard error by the deposition of tear proteins on soft contact lenses was differently detected depending on lens materials in the current study. Thus, the deposition of tear proteins induced by longer period of lens wearing may be one of the causes that induces blurred vision, suggesting that soft contact lens wearers with the amount of tear proteins may need to choose proper lens material.

Calibration of Thermal Camera with Enhanced Image (개선된 화질의 영상을 이용한 열화상 카메라 캘리브레이션)

  • Kim, Ju O;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.621-628
    • /
    • 2021
  • This paper proposes a method to calibrate a thermal camera with three different perspectives. In particular, the intrinsic parameters of the camera and re-projection errors were provided to quantify the accuracy of the calibration result. Three lenses of the camera capture the same image, but they are not overlapped, and the image resolution is worse than the one captured by the RGB camera. In computer vision, camera calibration is one of the most important and fundamental tasks to calculate the distance between camera (s) and a target object or the three-dimensional (3D) coordinates of a point in a 3D object. Once calibration is complete, the intrinsic and the extrinsic parameters of the camera(s) are provided. The intrinsic parameters are composed of the focal length, skewness factor, and principal points, and the extrinsic parameters are composed of the relative rotation and translation of the camera(s). This study estimated the intrinsic parameters of thermal cameras that have three lenses of different perspectives. In particular, image enhancement based on a deep learning algorithm was carried out to improve the quality of the calibration results. Experimental results are provided to substantiate the proposed method.