• Title/Summary/Keyword: 3D urban feature

Search Result 32, Processing Time 0.016 seconds

The Evaluation of Accuracy for Airborne Laser Surveying via LiDAR System Calibration (시스템 초기화(Calibration)에 따른 항공레이저측량의 정확도 평가)

  • 이대희;위광재;김승용;김갑진;이재원
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.15-26
    • /
    • 2004
  • The calibration for systematic error in LiDAR is crucial for the accuracy of airborne laser scanning. The main error is the misalignment of platforms between INS(Inertial Navigation System) and Laser scanner For planimetrical calibration of LiDAR, the building is good feature which has great changes in height and continuous flat area in the top. The planimetry error(pitch, roll) is corrected by adjustment of height which is calculated from comparing ground control points(GCP) of building to laser scanning data. We can know scale correction of laser range by the comparison of LiDAR data and GCP is arranged at the end of scan angle where maximize the height error. The area for scale calibration have to be large flat and have almost same elevation. At 1000m for average flying height, The Accuracy of laser scanning data using LiDAR is within 110cm in height and ${\pm}$50cm in planmetry so we can use laser scanning data for generating 3D terrain surface, expecically digital surface model(DSM) which is difficult to measure by aerial photogrammetry in forest, coast, urban area of high buildings

  • PDF

Development of A Network loading model for Dynamic traffic Assignment (동적 통행배정모형을 위한 교통류 부하모형의 개발)

  • 임강원
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.149-158
    • /
    • 2002
  • For the purpose of preciously describing real time traffic pattern in urban road network, dynamic network loading(DNL) models able to simulate traffic behavior are required. A number of different methods are available, including macroscopic, microscopic dynamic network models, as well as analytical model. Equivalency minimization problem and Variation inequality problem are the analytical models, which include explicit mathematical travel cost function for describing traffic behaviors on the network. While microscopic simulation models move vehicles according to behavioral car-following and cell-transmission. However, DNL models embedding such travel time function have some limitations ; analytical model has lacking of describing traffic characteristics such as relations between flow and speed, between speed and density Microscopic simulation models are the most detailed and realistic, but they are difficult to calibrate and may not be the most practical tools for large-scale networks. To cope with such problems, this paper develops a new DNL model appropriate for dynamic traffic assignment(DTA), The model is combined with vertical queue model representing vehicles as vertical queues at the end of links. In order to compare and to assess the model, we use a contrived example network. From the numerical results, we found that the DNL model presented in the paper were able to describe traffic characteristics with reasonable amount of computing time. The model also showed good relationship between travel time and traffic flow and expressed the feature of backward turn at near capacity.