• Title/Summary/Keyword: 3D urban feature

Search Result 32, Processing Time 0.026 seconds

Synthesis of High-Aspect-Ratio BaTiO3 Platelets by Topochemical Conversion and Fabrication of Textured Pb(Mg1/3Nb2/3)O3-32.5PbTiO3 Ceramics

  • Zhao, Wei;E, Lei;Ya, Jing;Liu, Zhifeng;Zhou, Heping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2305-2308
    • /
    • 2012
  • Perovskite structured barium titanate particles ($BaTiO_3$) platelets were synthesized by molten salt synthesis and topochemical microcrystal conversion. As the precursors of $BaTiO_3$, plate-like $BaBi_4Ti_4O_{15}$ particles were first synthesized by the reaction of $Bi_4Ti_3O_{12}$, $BaCO_3$, and $TiO_2$ at $1080^{\circ}C$ for 3 h in $BaCl_2$-KCl molten salt. After the topochemical reactions, layer-structured $BaBi_4Ti_4O_{15}$ particles transformed to the perovskite $BaTiO_3$ platelets. $BaTiO_3$ particles with thickness of approximately $0.5{\mu}m$ and a length of $10-15{\mu}m$ retained the morphology feature of the $BaBi_4Ti_4O_{15}$ precursor. For <001> $Pb(Mg_{1/3}Nb_{2/3})O_3-32.5PbTiO_3$ (PMNT)-5 wt % PbO piezoelectric ceramics textured with 5 vol % of $BaTiO_3$ templates, the Lotgering factor reached 0.82, and $d_{33}$ was 870 pC/N.

Rectangle Region Based Stereo Matching for Building Reconstruction

  • Wang, Jing;Miyazaki, Toru;Koizumi, Hirokazu;Iwata, Makoto;Chong, Jong-Wha;Yagyu, Hiroyuki;Shimazu, Hideo;Ikenaga, Takeshi;Goto, Satoshi
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.9-17
    • /
    • 2007
  • Feature based stereo matching is an effective way to perform 3D building reconstruction. However, in urban scene, the cluttered background and various building structures may interfere with the performance of building reconstruction. In this paper, we propose a novel method to robustly reconstruct buildings on the basis of rectangle regions. Firstly, we propose a multi-scale linear feature detector to obtain the salient line segments on the object contours. Secondly, candidate rectangle regions are extracted from the salient line segments based on their local information. Thirdly, stereo matching is performed with the list of matching line segments, which are boundary edges of the corresponding rectangles from the left and right image. Experimental results demonstrate that the proposed method can achieve better accuracy on the reconstructed result than pixel-level stereo matching.

  • PDF

A Semi-automated Method to Extract 3D Building Structure

  • Javzandulam, Tsend-Ayush;Kim, Tae-Jung;Kim, Kyung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.211-219
    • /
    • 2007
  • Building extraction is one of the essential issues for 3D city modelling. In recent years, high-resolution satellite imagery has become widely available and it brings new methodology for urban mapping. In this paper, we have developed a semi-automatic algorithm to determine building heights from monoscopic high-resolution satellite data. The algorithm is based on the analysis of the projected shadow and actual shadow of a building. Once two roof comer points are measured manually, the algorithm detects (rectangular) roof boundary automatically. Then it estimates a building height automatically by projecting building shadow onto the image for a given building height, counting overlapping pixels between the projected shadow and actual shadow, and finding the height that maximizes the number of overlapping pixels. Once the height and roof boundary are available, the footprint and a 3D wireframe model of a building can be determined. The proposed algorithm is tested with IKONOS images over Deajeon city and the result is compared with the building height determined by stereo analysis. The accuracy of building height extraction is examined using standard error of estimate.

A Basic Study on the Extraction of Dangerous Region for Safe Landing of self-Driving UAMs (자율주행 UAM의 안전착륙을 위한 위험영역 추출에 관한 기초 연구)

  • Chang min Park
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.24-31
    • /
    • 2023
  • Recently, interest in UAM (Urban Air Mobility, UAM), which can take off and land vertically in the operation of urban air transportation systems, has been increasing. Therefore, various start-up companies are developing related technologies as eco-friendly future transportation with advanced technology. However, studies on ways to increase safety in the operation of UAM are still insignificant. In particular, efforts are more urgent to improve the safety of risks generated in the process of attempting to land in the city center by UAM equipped with autonomous driving. Accordingly, this study proposes a plan to safely land by avoiding dangerous region that interfere when autonomous UAM attempts to land in the city center. To this end, first, the latitude and longitude coordinate values of dangerous objects observed by the sense of the UAM are calculated. Based on this, we proposed to convert the coordinates of the distorted planar image from the 3D image to latitude and longitude and then use the calculated latitude and longitude to compare the pre-learned feature descriptor with the HOG (Histogram of Oriented Gradients, HOG) feature descriptor to extract the dangerous Region. Although the dangerous region could not be completely extracted, generally satisfactory results were obtained. Accordingly, the proposed research method reduces the enormous cost of selecting a take-off and landing site for UAM equipped with autonomous driving technology and contribute to basic measures to reduce risk increase safety when attempting to land in complex environments such as urban areas.

  • PDF

Producing True Orthophoto Using Multi-Dimensional Spatial Information (다차원공간정보를 이용한 실감정사영상 제작 방안)

  • Lee, Hyun-Jik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.241-253
    • /
    • 2008
  • Recently, it is appearing that new paradigm of urban planning that ubiquitous concept such as the u-City, uECO-City is introduced while is rising necessity about third dimensional geo-spatial information of high quality for urban area. Orthophoto can manufacture by expense and time that is less easily than digital map using personal computer even if is not highly technician and according as position relation between manmade feature and natural feature is equal, can get information of distance, angle, horizontal and vertical position coordinate of topographic, area etc.. directly through orthophoto. Also, visual effect is good that orthophoto is expressed by image and interpretation is easy to detailed part of topographic. Manufacture and practical use are consisting in various field, for it is having advantage that can recognize information effectively than digital map. Therefore, this study presents a way of generating a detailed DSM for producing a true-orthphoto of the urban area, and this study also presents a way to produce an optimum true-orthophoto for an urban area by investigating through experiment the optimum variable for the geometric and radiometric correction of the orthophoto. This study also examined the potentials of the thesis by building a 3-dimensional city model of the model region with the above thesis on optimum generating method.

Estimation of Image-based Damage Location and Generation of Exterior Damage Map for Port Structures (영상 기반 항만시설물 손상 위치 추정 및 외관조사망도 작성)

  • Banghyeon Kim;Sangyoon So;Soojin Cho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.49-56
    • /
    • 2023
  • This study proposed a damage location estimation method for automated image-based port infrastructure inspection. Memory efficiency was improved by calculating the homography matrix using feature detection technology and outlier removal technology, without going through the 3D modeling process and storing only damage information. To develop an algorithm specialized for port infrastructure, the algorithm was optimized through ground-truth coordinate pairs created using images of port infrastructure. The location errors obtained by applying this to the sample and concrete wall were (X: 6.5cm, Y: 1.3cm) and (X: 12.7cm, Y: 6.4cm), respectively. In addition, by applying the algorithm to the concrete wall and displaying it in the form of an exterior damage map, the possibility of field application was demonstrated.

Construction Plan of 3D Cadastral Information System on Underground Space (지하공간 3차원 지적정보시스템 구축 방안 연구)

  • Song, Myungsoo;Lee, Sungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.57-65
    • /
    • 2014
  • Recently, Construction business is changing from on the ground to underground space because of deficit of developing space, creation of green space and of incremental of land compensation expenses. Meanwhile, 3D Topographic, Marine and Cadastral maps need to have Spatial Interrelation. Also, understanding of the information is also needed. Spatial information object registration system is impossible to contact and understanding intelligence mutually because the former one is managed as automatic ID system. Therefore, 3D Object information ID System of underground space is managed based on Object Identifier. Construction of Spatial information integration ID System is required and it will offer Division Code (Ground, Index, Underground) and depth information. We are defined and classified Under Spatial Information in this paper. Moreover, we developed the integration ID System based on UFID for cadastral information Construction. We supposed underground spatial information DB Construction and a developed the way of exploiting 3D cadastral information system through the study. The research result will be the base data of Standard ID system, DB Construction and system Development of National spatial data which is considered together with spatial interrelation.

Multi-Image Stereo Method Using DEM Fusion Technique (DEM 융합 기법을 이용한 다중영상스테레오 방법)

  • Lim Sung-Min;Woo Dong-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.212-222
    • /
    • 2003
  • The ability to efficiently and robustly recover accurate 3D terrain models from sets of stereoscopic images is important to many civilian and military applications. A stereo matching has been an important tool for reconstructing three dimensional terrain. However, there exist many factors causing stereo matching error, such as occlusion, no feature or repetitive pattern in the correlation window, intensity variation, etc. Among them, occlusion can be only resolved by true multi-image stereo. In this paper, we present multi-image stereo method using DEM fusion as one of efficient and reliable true multi-image methods. Elevations generated by all pairs of images are combined by the fusion process which accepts an accurate elevation and rejects an outlier. We propose three fusion schemes: THD(Thresholding), BPS(Best Pair Selection) and MS(Median Selection). THD averages elevations after rejecting outliers by thresholding, while BPS selects the most reliable elevation. To determine the reliability of a elevation or detect the outlier, we employ the measure of self-consistency. The last scheme, MS, selects the median value of elevations. We test the effectiveness of the proposed methods with a quantitative analysis using simulated images. Experimental results indicate that all three fusion schemes showed much better improvement over the conventional binocular stereo in natural terrain of 29 Palms and urban site of Avenches.

Geometric Regualrization of Irregular Building Polygons: A Comparative Study

  • Sohn, Gun-Ho;Jwa, Yoon-Seok;Tao, Vincent;Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.545-555
    • /
    • 2007
  • 3D buildings are the most prominent feature comprising urban scene. A few of mega-cities in the globe are virtually reconstructed in photo-realistic 3D models, which becomes accessible by the public through the state-of-the-art online mapping services. A lot of research efforts have been made to develop automatic reconstruction technique of large-scale 3D building models from remotely sensed data. However, existing methods still produce irregular building polygons due to errors induced partly by uncalibrated sensor system, scene complexity and partly inappropriate sensor resolution to observed object scales. Thus, a geometric regularization technique is urgently required to rectify such irregular building polygons that are quickly captured from low sensory data. This paper aims to develop a new method for regularizing noise building outlines extracted from airborne LiDAR data, and to evaluate its performance in comparison with existing methods. These include Douglas-Peucker's polyline simplication, total least-squared adjustment, model hypothesis-verification, and rule-based rectification. Based on Minimum Description Length (MDL) principal, a new objective function, Geometric Minimum Description Length (GMDL), to regularize geometric noises is introduced to enhance the repetition of identical line directionality, regular angle transition and to minimize the number of vertices used. After generating hypothetical regularized models, a global optimum of the geometric regularity is achieved by verifying the entire solution space. A comparative evaluation of the proposed geometric regulator is conducted using both simulated and real building vectors with various levels of noise. The results show that the GMDL outperforms the selected existing algorithms at the most of noise levels.

Comparative Study on the Methodology of Motor Vehicle Emission Calculation by Using Real-Time Traffic Volume in the Kangnam-Gu (자동차 대기오염물질 산정 방법론 설정에 관한 비교 연구 (강남구의 실시간 교통량 자료를 이용하여))

  • 박성규;김신도;이영인
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.4
    • /
    • pp.35-47
    • /
    • 2001
  • Traffic represents one of the largest sources of primary air pollutants in urban area. As a consequence. numerous abatement strategies are being pursued to decrease the ambient concentration of pollutants. A characteristic of most of the these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emission inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for vehicle types. The majority of inventories are compiled using passive data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. The study of current trends are towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this study, a methodology of motor vehicle emission calculation by using real-time traffic data was studied. A methodology for estimating emissions of CO at a test area in Seoul. Traffic data, which are required on a street-by-street basis, is obtained from induction loops of traffic control system. It was calculated speed-related mass of CO emission from traffic tail pipe of data from traffic system, and parameters are considered, volume, composition, average velocity, link length. And, the result was compared with that of a method of emission calculation by VKT(Vehicle Kilometer Travelled) of vehicles of category.

  • PDF