• 제목/요약/키워드: 3D textiles

검색결과 600건 처리시간 0.023초

동작 가변적 3D 프린팅 충격보호패드의 설계 (Design of motion-adaptable 3D printed impact protection pad)

  • 박정현;이진숙;이정란
    • 복식문화연구
    • /
    • 제30권3호
    • /
    • pp.403-413
    • /
    • 2022
  • The purpose of this study was to develop a 3D mesh-type impact protection pad with excellent motion adaptability and functionality by applying 3D printing technology. The hexagonal 3D mesh, which constitutes the basic structure of the pad, comprises two types: small and large. The bridge connecting the basic units was designed as the I-type, V-type, IV-type, and VV-type. After evaluating the characteristics of the bridge, it was found that the V-type bridge had the highest flexibility and tensile elongation. The hip joint pad and knee pad were completed by combining the hexagonal 3D mesh structure with the optimal bridge design. The impact protection pad was printed using a fused deposition modeling-type 3D printer with a filament made of thermoplastic polyurethane material, and the protection pad's performance was evaluated. When an impact force of approximately 6,500N was applied to the pad, the force attenuation percentage was 78%, and when an impact force of approximately 8,000N was applied, the force attenuation percentage was 75%. Through these results, it was confirmed that the 3D-printed impact protection pad with a hexagonal 3D mesh structure connected by a V-shaped bridge developed in this study can adapt to changes in the body surface according to movement and provides excellent impact protection performance.

Effect of Fabric Properties used for the Loop Type Decorative Elements on the 3-dimensional Shape

  • Ko, Youngmin;Kim, Jongjun
    • 패션비즈니스
    • /
    • 제17권3호
    • /
    • pp.30-47
    • /
    • 2013
  • In the modern fashion industry, efficiency has been increasing thanks to development of computer graphics, IT technology, and digitalization. Unlike the past when fashion design heavily depended on handwork, digitalization of fashion industry makes fabrication time shorter and enables designers to adopt comprehensive expression, generating high value-added product. The Apparel CAD, an example of the digitalized fashion industry, has been developed from 2D system into a system providing 3D simulation. Digital clothing can be determined as an activity of designers using the tool in order to fabricate pattern and simulate its designed clothes in the virtual space of computer. In this study, physical properties of eight materials, which can be utilized on a par with current fashion trend, have been specified. For more sophisticated investigation, external appearance of the material was investigated by 3D scanning. In order to examine the physical properties of fabric specimens, KES(Kawabata Evaluation System) measurements and other physical property measurements were made. With the results, virtual material and clothes were simulated via CLO 3D, one of 3D apparel CAD systems. Then, virtual fabrics and clothes of similar types were generated and analyzed.

유방이 큰 여성을 위한 브래지어 패턴 설계 -3차원 유방 형상 자료를 중심으로- (Design of Brassiere Pattern for Big Size Breast Women -Based on 3D Breast Scanning Data-)

  • 한초희;이경화
    • 한국의류학회지
    • /
    • 제43권2호
    • /
    • pp.204-214
    • /
    • 2019
  • A CAD program has recently been introduced that can be directly developed into a three-dimensional human body shape and made into a pattern. It is possible to fabricate a bra that reflects the volume and surface area of the breast; however, it still needs to be verified. This study investigates the average size and shape of 20 big-breasted women and designs a brassiere pattern for women with large breasts using a 3D Flattening function of OptiTex PDS v15.6. In addition, the study verifies the reliability of the proposed method compared to a conventional brassiere pattern. The study results are as follows. First, the three dimensional measurement values were smaller than the direct measurement dimensions when the three dimension measurement dimensions of the subjects were compared with the direct measurement dimensions, the replica measurement dimensions and the three dimensional measurement dimensions. Second, the 3D flattening pattern reflects the actual shape, length, and area of the actual breast when comparing a brassiere pattern using a 3D shape and pattern reflecting the direct measurement.

한국인 성인 남녀의 머리 및 얼굴 부위 측정치 통합분석 (Integrating Analysis on Measurements of Head and Face for Korean Men and Women)

  • 전은경;문지현
    • 한국의류학회지
    • /
    • 제42권6호
    • /
    • pp.988-1001
    • /
    • 2018
  • The head and face are the most complicated structures of the human body. However, unlike apparel products, many of the head and face related products are produced in unisex or one-size-fits-all. Therefore, it is necessary to provide a practical analysis that reflects these size structures. This study analyzed head and face measurements of men, women, and both men and women; its purpose lying in clarifying the differences and commonalities between the measurements of men and women and discovering the possibility of integrating analysis on measurements of men and women. 3D face and head measurement data of men and women from 20 to 29 years-old from Size Korea's 6th human body size data were analyzed for this study. The mutual 9 factors were extracted as the results of the three factor analyses (both men and women) separately and men and women integrated. However in the cluster analysis based on the 9 factors, men and women showed mutual characteristics and different landscape in group types and distribution. The commonalities and differences between men and women observed in this study should be applied to the sizes of head and face products.

스마트 웨어러블 회로 구성을 위한 고신축성 이선 전송선형 전자섬유 밴드 (Highly Elastic Two-wire Transmission Line E-textile Band for Smart Wearable Circuit Formation)

  • 노정심
    • 한국의류학회지
    • /
    • 제46권2호
    • /
    • pp.367-374
    • /
    • 2022
  • Herein, a highly elastic e-textile band with a two-wire transmission line was designed and fabricated for smart clothing applications. A conductive yarn with a very uniform low electrical resistance of 0.0357 Ω/cm was developed and used for the signal and ground lines. To control the elasticity of the e-textile band, spandex yarns were added in the warp direction during knitting and the tension was adjusted. As the length of the e-textile band increased, its RF performance deteriorated. Furthermore, the frequency corresponding to -3 dB S21 was lower in the 30% stretched band than in the unstretched band. For the e-textile bands with lengths 10, 50, and 100 cm, the frequencies corresponding to -3 dB S21 were 107.77, 24.56, and 13.02 MHz when not stretched, and 88.74, 22.02, and 12.60 MHz when stretched by 30%. The fabricated bands were flatter, more flexible, and more elastic than transmission line cables; thus, they can be easily integrated into wearables and smart clothing. However, to increase RF performance and achieve optimum utilization, future studies must focus on the fabrication of transmission lines with lower resistance and reduced distance between the signal and ground lines, and thus the number of transmission lines can be increased.

패딩 두께에 따른 20대 여성용 패딩 재킷 패턴 (Padded jacket patterns according to padding thickness for women in their 20s)

  • 이혜승;서미아;어미경
    • 복식문화연구
    • /
    • 제21권5호
    • /
    • pp.755-764
    • /
    • 2013
  • This study intends to use the basic patterns in 3oz bodice and 2oz sleeve padded jackets made for women in their 20s to research the proper ease of 2oz bodice and 2oz sleeve, 4oz bodice and 3oz sleeve padded jackets. The study also proposes a method of designing padded jacket patterns according to padding thickness. The results of this study are as follows: The 2oz bodice and 2oz sleeve padded jackets had the following sizes. The front and back bust, waist, and hip circumferences were calculated as B/4+2.5cm and B/4+3cm, W/4+2.6+3.3(D)cm and W/4+1.5+2.6(D)cm, and H/4+2.8cm and H/4+3cm, respectively. The length of the jacket was 62.4cm, and the sleeve length was calculated as 63.4cm. For the 4oz bodice and 3oz sleeve padded jackets, the front and back bust, waist, and hip circumferences were calculated as B/4+4cm and B/4+4cm, W/4+4.1+3(D)cm and W/4+2.5+3.6(D)cm, and H/4+4.3cm and H/4+4cm, respectively. The length of the jacket was 63.2cm, and the sleeve length was calculated as 64.2cm. The results of this study showed that padded jackets with thicker padding need more ease. For jackets with stitches, the decreased lengths must be added in the pattern length. The 2oz bodice and 2oz sleeve, 4oz bodice and 3oz sleeve padded jackets all scored 4 points or higher in the movement functionality assessment, thus showing outstanding movement functionality.

텍스타일 스트럭처 원리와 연계된 3D 프린팅 개발 유형 분석 (Analysis of the Type of 3D Printing Development Linked with the Textile Structure Principle)

  • 김효진;김성달
    • 패션비즈니스
    • /
    • 제22권2호
    • /
    • pp.1-13
    • /
    • 2018
  • 3D printing technology, which is expected to play a leading role within the Fourth Industrial Revolution, is becoming distinguished not only in the space, automotive, medical and engineering industries, but also in the area of design. The fashion and textile structures created by 3D printing technology were classified into three types - basic structure, unified structure, and a new physical structure. When traditional weaving, knitting, and stitching was reinterpreted through 3D printing, there were apparent limitations in reproducing the characteristics of fabric structures due to differences in the materials and structures of traditional textiles. New physical structures are being developed to break away from merely reproducing traditional textile structures, and to bring out the characteristics of 3D printing technology. As examples of new physical structures, there are the kinematics structure which utilizes the hinge method, mesostructure cellular material, and the N12 disk structure. Such techniques potentially open a new paradigm of fashion and textile structures. Some innovative aspects of 3D printing technology may result in changes in the methods of collaboration, manufacturing, and distribution. Designers are receiving help from specialists of various backgrounds to merge 3D printing technology to create original works. Also, 3D printing not only makes personalized custom designs available, but shortens the distribution channels, foretelling a change within the fashion and textile industry.

3D 가상화를 위한 드레이프성 간이 측정법 개발 (Development of a Simple Drape Measurement Method for 3D Virtualization)

  • 신보나;유동주;이소민;윤선영;심명희;윤창상
    • 한국의류학회지
    • /
    • 제45권5호
    • /
    • pp.881-891
    • /
    • 2021
  • This study proposes a simple drape measurement method for the 3D virtualization of garments. The proposed method uses angles or disks of different diameters to evaluate the drape properties easily. We divided 710 fabrics into ten groups based on the drape coefficient, of which 49.6% had drape coefficients of 30 or less. The drape properties were measured to classify the groups into smaller clusters using the angle formed when the center of the fabric was fixed. Accordingly, three clusters were formed for 60° and 100° angles. A method was devised using ten disks of different diameters to classify the remaining two clusters, except the cluster containing only the D10 group (D1-D5 and D5-D9). Three criteria-grade match, a sum of deviation, and standardization of deviation-were used for the classifications. The discriminative ability between groups was high for D1-D5 with disks with 24.0 and 25.5 cm diameters. Furthermore, a disk with a diameter of 16.5 cm was effective for D5-D9. The three-dimensional drape shapes were unique for the ten groups, which can be utilized as fundamental data for 3D virtualization.

3D 프린팅 기술을 활용한 낙상충격 보호패드 설계 및 구조에 따른 특성비교 (Design of Fall Impact Protection Pads Using 3D Printing Technology and Comparison of Characteristics according to Structure)

  • 박정현;정희경;이정란
    • 한국의류학회지
    • /
    • 제42권4호
    • /
    • pp.612-625
    • /
    • 2018
  • This study designed 16 kinds of basic structure and 4 kinds of modified structure for impact protection pads with a spacer fabric shape. The pad is a structure in which hexagonal three-dimensional units, composed of a surface layer and a spacer layer, are interconnected. Designed pads were printed with flexible $NinjaFlex^{(R)}$ materials using a FDM 3D printer. The printed pads were evaluated for impact protection performance, compression properties and sensory properties. The evaluation of the impact protection performance indicated that basic structures better than CR foam material at 20cm height were DV1.5, DX1.5, DX1.0, DV1.0 and HV1.5. The evaluation of the compression properties for the five types, with good results in the impact protection performance, indicated that DV1.0, DX1.0, DV1.5, HV1.5 and DX1.5 showed good results, respectively. The sensory evaluation of DV1.0, DX1.0, and DV1.5, which with good results when considering both the impact protection performance and the compression performance, showed that DV1.0 were the best for surface, flexibility, compression and weight. Therefore, DV1.0 is shown to be the best structure for protection pads.

3D 프린팅 기술을 활용한 낙상충격 보호패드 구조설계 및 필라멘트 소재에 따른 특성 비교 (Structure Design of Fall Impact Protection Pad Using 3D Printing Technology and Comparison of Characteristics According to Filament Material)

  • 박정현;정희경;이정란
    • 한국의류학회지
    • /
    • 제41권5호
    • /
    • pp.939-949
    • /
    • 2017
  • This study uses 3D printing technology to design and fabricate a fall impact protection pad with a spacer fabric structure. The design of the pads consists of hexagonal three-dimensional units connected in a honey-comb shape; in addition, the unit consists of a surface layer and a spacer layer. Protect pads were designed as either a hexagonal type or diamond type according to the surface layer structure; subsequently, a spacer filament was also designed as the most basic I-shape type. Designed pads were printed using four types of flexible filaments to select suitable material for a fall impact protection pad. Impact protection performance and bending stiffness were evaluated for the eight type of pad outputs. As a result of the impact protection performance evaluation, when the force of 6,500N was applied, the force passed through the pad was in the range of 1,370-2,132N. FlexSolid$^{(R)}$ and Skinflex$^{TM}$ showed good protection performance and cubicon flexible filament showed the lowest protection. NinjaFlex$^{(R)}$ was found to be the most flexible in the bending stiffness evaluation.