• Title/Summary/Keyword: 3D stereoscopic display

Search Result 169, Processing Time 0.029 seconds

A 3D Image Player for CRT/LCD Monitors

  • Ko, Yoon-Ho;Choi, Chul-Ho;Kwon, Byong-Heon;Choi, Myung-Ryul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.895-898
    • /
    • 2002
  • In this paper, we propose a 3D image player for LCD monitors as well as CRT monitors. As we consider an afterglow and digital processing of LCD monitors, a stereoscopic images can be shown on CRT monitors as well as LCD monitors using the proposed a3D image player. We have implemented a 3D image player using FPGA (MAX 9320), We show prove that a stereoscopic images are shown on the LCD monitors.

  • PDF

Viewers' Psychophysiological and Self-report Responses to 3D Stereoscopic Display (3D 영상의 입체성이 콘텐츠 특성에 따라 이용자의 심리적 반응에 미치는 효과 - 콘텐츠의 유인가와 각성도를 중심으로 -)

  • Lim, So-Hei;Chung, Ji-In
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.211-222
    • /
    • 2012
  • There has been growing academic interest in revealing the effect of 3D stereoscopic displays, mostly based on the assumption that 3D would enhance the media user's psychological experiences. A 2(Display: 2D, 3D) x 2(Arousal: High, Low) x2(Valence: Positive, Negative) within-between subject experimental design, including both psychophysiological and self-report measurements, was employed to investigate if valence and arousal of the media content interact with the 3D stereo display. The results confirmed that 3D stereo significantly enhances the viewer's skin conductance level, while no meaningful difference for HR was found across the experimental conditions. The viewer's recall memory did not differ depending on the display type either. However, the viewer experienced a greater level of presence and liking of the content when the negative content was displayed in 3D stereo in comparison with the positive content. The practical implications of the results are further discussed.

Optimal Design of Lenticular Lens Sheet for the 3D Display on TFT-LCDs (TFT-LCD의 3차원 영상출력을 위한 렌티큘러 렌즈 최적설계)

  • Kim, Il-Joo;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.257-261
    • /
    • 2009
  • In this study, we have researched the optimum design method of the lenticular lens sheet for 3D displays on a TFT-LCD panel, to offer a more stable stereoscopic image, improved 3D quality, and a wider viewing zone. Especially, we have defined the viewing zone width (a parameter denoted as Z) to apply it to the optimum design. The results of this new design method have been compared with the existing design method. As a result, it is revealed that the proposed design method improves the stereoscopic image quality by reducing the black matrix zone width.

Next Generation Non-Glasses 3D Stereoscopic Monitors and Spatial Information (차세대 무안경 3D 입체 모니터와 공간정보)

  • Lee, Seun-Geun;Jeon, Young-Jae;Lee, Dong-Cheon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.81-85
    • /
    • 2010
  • Recently, 3D stereo movies, 3D TV broadcasting, and stereoscopic monitors become hot issue. Worldwide engagement in an intense competition for stereo viewing technology just begins. Photogrammetry is the originator of dealing obtaining stereo imagery, processing and display. Non-glasses stereo monitors will replace existing monitors in near future. This study introduces real 3D stereo viewing methods of geospatial data on the non-glasses stereoscopic monitors.

  • PDF

System development of fatigue-less HMD system 3DDAC(3D Display with Accommodative Compensation): System implementation of Mk.4 in light-weight HMD

  • Toshiaki-SUGIHARA;Tsutomu-MIYASATO
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.51-54
    • /
    • 1998
  • This paper describes the development of the 3DDAC mk.4 system, which is a brand new implementation on the research program. The 3DDAC is a fatigue-less stereoscopic display system that is provided with a compensating function of accommodation for binocular disparity 3D image representation. The mk.4 system also features a light-weight HMD style.

  • PDF

Future of Stereoscopic 3D through the Analysis of Realistic Media Art (실감미디어 아트 분석을 통한 3D 입체영상의 미래 조망)

  • Kim, Hee-Young;Shin, Chang-Ok
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.1
    • /
    • pp.91-102
    • /
    • 2012
  • Generally today's culture and the arts industry has been focusing more on economic value than the arts. Therefore this paper will elucidate the meaning of the culture and the arts can be a break though which can only include commercial and economic values but transcend its values ultimately. First of all, this paper will suggest an advanced 3D stereoscopic images by analysis of examples and environments of realistic media arts. Looking into the changes of related technologies and market environments, the motion-recognition technology, as seem in SF film "Minority report", has become a feasible technology. In the past, 3D stereoscopic images were shown in the theme park theatre and exhibition halls for group viewing. but recent 3D TV and display devices have changed those environments to personal. Since domestic researches of realistic media art has been little, this paper will analyze them respecting to three broad classifications. The results are : Firstly, in CAVE method, more impact capabilities of spectators are expected that they can manipulate interactive interfaces freely and the physical movements of spectators can operate interactively. Secondly, inter-network communications and expansion of viewers' perceptions are predicted by way of HMD method, sensor suites and communication equipments. Thirdly, combinations of HMD and motion tracking utilization is foreseen. With the convergent usages of these three features, we can prospect the possibilities of interactive 4D that spectators wearing 3D stereoscopic display devices can experience and make their own 3D stereoscopic images actively at the point of their views.

PARALLAX ADJUSTMENT FOR REALISTIC 3D STEREO VIEWING OF A SINGLE REMOTE SENSING IMAGE

  • Kim, Hye-Jin;Choi, Jae-Wan;Chang, An-Jin;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.452-455
    • /
    • 2007
  • 3D stereoscopic viewing of large scale imagery, such as aerial photography and satellite images, needs different parallaxes relative to the display scale. For example, when a viewer sees a stereoscopic image of aerial photography, the optimal parallax of its zoom-in image should be smaller than that of its zoom-out. Therefore, relative parallax adjustment according to the display scale is required. Merely adjusting the spacing between stereo images is not appropriate because the depths of the whole image are either exaggerated or reduced entirely. This paper focuses on the improving stereoscopic viewing with a single remote sensing image and a digital surface model (DSM). We present the parallax adjustment technique to maximize the 3D realistic effect and the visual comfort. For remote sensing data, DSM height value can be regarded as disparity. There are two possible kinds of methods to adjust the relative parallax with a single image performance. One is the DSM compression technique: the other is an adjustment of the distance between the original image and its stereo-mate. In our approach, we carried out a test to evaluate the optimal distance between a single remote sensing image and its stereo-mate, relative to the viewing scale. Several synthetic stereo-mates according to certain viewing scale were created using a parallel projection model and their anaglyphs were estimated visually. The occlusion of the synthetic stereo-mate was restored by the inpainting method using the fields of experts (FoE) model. With the experiments using QuickBird imagery, we could obtain stereoscopic images with optimized parallax at varied display scales.

  • PDF

Method to Reduce the Cross-talk in 3D PDP TV

  • Kim, Dae-Hun;Lee, Jun-Hak;Kim, Tae-Hyung;Moon, Sung-Hak;Kim, Seong-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.513-516
    • /
    • 2009
  • The cross-talk, which occurs due to the phosphor decay time, is a critical problem in the 3D PDP TV. First, we investigated the factors that affected the cross-talk in waveforms. After the investigation, we designed the driving waveforms for the 3D PDP TV. We also obtained a better result by controlling the driving timing of 3D active glasses.

  • PDF

Subjective evaluation of wide-viewing-angle stereoscopic contents in a dome theater

  • Yoon, H.;Abe, N.;Ohta, K.;Kawai, T.;Suzuki, S.
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.153-158
    • /
    • 2011
  • This study was conducted for the purpose of evaluating the impressions gained by the members of the audience who have seen contents in a dome theater, based on their seating positions. Dome Theater Gaia provided the environment where the contents for evaluation were to be presented, and enquete (survey) was used as the investigative method. The survey results showed that the presentation of wide-viewing-angle three-dimensional (3D) contents proved effective in enhancing the 3D effect and the presence in a dome theater. Moreover, the study results confirmed that in relation to the impression evaluation of the contents for different seating positions, the optimal seating position varied according to the presentation method of the 3D and 2D contents.

Design and Tolerance Analysis of 3-D Stereoscopic Display Modules with Alternating Illumination Angles (조명각 변조 방식의 3차원 입체영상 표시장치설계 및 공차분석)

  • Jeong, Woo-Chul;Ha, Sang-Woo;Park, Hun-Yang;O, Beom-Hwan;Park, Se-Geun;Lee, El-Hang;Lee, Seung-Gol;Park, Sun-Ryoung;Jo, Sung-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.201-208
    • /
    • 2005
  • In order to realize a 3-D stereoscopic display module with alternating illumination angles, several conditions required for a lenticular lens sheet were established, and then both the lens specification and the module structure were designed. Also the performance of the stereoscopic module and its tolerance characteristics were evaluated by simulating the intensity distribution on the observation plane with a finite-ray tracing technique. From the evaluation, it was known that an intersection area between two adjacent lenses should not be filled and that the lateral mismatch between a planar liquid crystal shutter and a lens sheet should be minimized.