• Title/Summary/Keyword: 3D stereo

Search Result 805, Processing Time 0.027 seconds

Spatial Image Information Generation of Rock Wall by Automatic Focal Length Extraction System (초점거리 자동추출 시스템에 의한 암벽의 공간영상정보 생성)

  • Lee, Jae-Kee;Lee, Kye-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.427-436
    • /
    • 2007
  • Because the slope made up the construction of any other facilities, has many risks of a collapse, existing inspection methods to collect information for a construction site of slope bring up a long time of inspection period, cost and approach for a measuring instrument and it presents the critical point of collecting materials. For getting images to use zoom lens in any positions this study will use free zoomer constructed values of data classified by the focal length develop Image Loader system to make it load not only camera information but also camera test data values of the focal length took a photograph automatically if it measure to use a variety of cameras or other lens. Also, as it constructs three dimensions spatial image information from images of obtained objects this study presents effective basic materials of slope surveying and inspection and it shows exact surveying methods for dangerous slope not to access.

The GEO-Localization of a Mobile Mapping System (모바일 매핑 시스템의 GEO 로컬라이제이션)

  • Chon, Jae-Choon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.555-563
    • /
    • 2009
  • When a mobile mapping system or a robot is equipped with only a GPS (Global Positioning System) and multiple stereo camera system, a transformation from a local camera coordinate system to GPS coordinate system is required to link camera poses and 3D data by V-SLAM (Vision based Simultaneous Localization And Mapping) to GIS data or remove the accumulation error of those camera poses. In order to satisfy the requirements, this paper proposed a novel method that calculates a camera rotation in the GPS coordinate system using the three pairs of camera positions by GPS and V-SLAM, respectively. The propose method is composed of four simple steps; 1) calculate a quaternion for two plane's normal vectors based on each three camera positions to be parallel, 2) transfer the three camera positions by V-SLAM with the calculated quaternion 3) calculate an additional quaternion for mapping the second or third point among the transferred positions to a camera position by GPS, and 4) determine a final quaternion by multiplying the two quaternions. The final quaternion can directly transfer from a local camera coordinate system to the GPS coordinate system. Additionally, an update of the 3D data of captured objects based on view angles from the object to cameras is proposed. This paper demonstrated the proposed method through a simulation and an experiment.

Fast Generation of Intermediate View Image Using GPGPU-Based Disparity Increment Method (GPGPU 기반의 변위증분 방법을 이용한 중간시점 고속 생성)

  • Koo, Ja-Myung;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1908-1918
    • /
    • 2013
  • Free-view, auto-stereoscopic video service is a next generation broadcasting system which offers a three-dimensional video, images of the various point are needed. This paper proposes a method that parallelizes the algorithm for arbitrary intermediate view-point image fast generation and make it faster using General Propose Graphic Processing Unit(GPGPU) with help of the Compute Unified Device Architecture(CUDA). It uses a parallelized stereo-matching method between the leftmost and the rightmost depth images to obtain disparity information and It use data calculated disparity increment per depth value. The disparity increment is used to find the location in the intermediate view-point image for each depth in the given images. Then, It is eliminate to disocclusions complement each other and remaining holes are filled image using hole-filling method and to get the final intermediate view-point image. The proposed method was implemented and applied to several test sequences. The results revealed that the quality of the generated intermediate view-point image corresponds to 30.47dB of PSNR in average and it takes about 38 frames per second to generate a Full HD intermediate view-point image.

The taxonomic consideration of achene morphology in Bidens L. (Asteraceae) in Korea (한국산 가막사리속(Bidens L., 국화과) 수과 형태의 분류학적 검토)

  • Kim , Sun-Yu;Hong, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.38 no.4
    • /
    • pp.509-522
    • /
    • 2008
  • 한국산 가막사리속(Bidens L.)에 포함된 10분류군(8종 2변종)의 수과형태를 연구하기 위하여 입체현미경과 주사전자현미경을 이용하여 관찰하였다. 연구된 가막사리속에서 까끄라기를 제외한 수과의 크기는 $3.0-19.5{\times}0.7-2.6 mm$이다. 관모는2-4개의 까끄라기로 구성되어 있고, 까끄라기의 길이는 2.2-5.6 mm이다. 강모의 배열은 1-3열이었다. 수과의 다형화가 6개의 분류군(B. bipinnata, B. biternata, B. frondosa, B. parviflora, B. pilosa var. pilosa, B. tripartita var. tripartita)에서 확인되었다. 수과의 형태와 까끄라기의 수에 의해 4가지 유형으로 구분되었다. - Type A: 장타원형이고, 까끄라기 수는 2개(B. parviflora); Type B: 장타원형이고, 까끄라기 수는 3개 이상(B. bipinnata, B. biternata, B. pilosa var. pilosa, B. pilosa var. minor) Type C: 도란형이고, 까끄라기의 수는 2개(B. frondosa, B. radiata var. radiata, B. radiata var. pinnatifida, B. tripartita var. tripartita); Type D: 도란형이고, 까끄라기의 수는 3개 이상(B. cernua). 까끄라기의 강모 표면무늬는 3가지 즉 나선상, 평활상, 불규칙한 직선형으로 나타났다. 수과의 표면은 각피층이 발달한 다각형, 평활상 그리고 굴곡형으로 나타났다. 수과형질의 분류학적 적용에 대하여 간략하게 토의하였다. 수과형질을 바탕으로 한국산 가막사리속 분류군에 대한 검색표를 제시하였다.

Extraction of 3D Building Information by Modified Volumetric Shadow Analysis Using High Resolution Panchromatic and Multi-spectral Images (고해상도 전정색 영상과 다중분광 영상을 활용한 그림자 분석기반의 3차원 건물 정보 추출)

  • Lee, Taeyoon;Kim, Youn-Soo;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.499-508
    • /
    • 2013
  • This article presents a new method for semi-automatic extraction of building information (height, shape, and footprint location) from monoscopic urban scenes. The proposed method is to expand Semi-automatic Volumetric Shadow Analysis (SVSA), which can handle occluded building footprints or shadows semi-automatically. SVSA can extract wrong building information from a single high resolution satellite image because SVSA is influenced by extracted shadow area, image noise and objects around a building. The proposed method can reduce the disadvantage of SVSA by using multi-spectral images. The proposed method applies SVSA to panchromatic and multi-spectral images. Results of SVSA are used as parameters of a cost function. A building height with maximum value of the cost function is determined as actual building height. For performance evaluation, building heights extracted by SVSA and the proposed method from Kompsat-2 images were compared with reference heights extracted from stereo IKONOS. The result of performance evaluation shows the proposed method is a more accurate and stable method than SVSA.

Estimating Accuracy of 3-D Models of SPOT Imagery Based on Changes of Number of GCPs (SPOT영상을 사용한 3차원 모델링시 지상기준점수에 따른 정확도 평가)

  • 김감래;안병구;김명배
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.61-69
    • /
    • 2003
  • There is various kinds cause that influence to created DEM and orthoimage using stereo satellite images. Specialty, research about effect that GCP number gives to accuracy of DEM, orthoimage and modeling may have to be gone ahead. Therefore, this research increases GCP number by 5 to 30 and created each modeling, DEM and orthoimage using SPOT panchromatic images that resolution is 10m by digital image processing method. Accuracy assessment did by orthoimage using 20 check point. As a result, GCP number between 10∼30 modeling RMSE is 1 pixel low appear. Horizontal·vertical error that use orthoimage looked tendency that decrease GCP number increases, and confirmed by the most economical in GCP number 10∼15. Also, analyze correlation of GCP number and orthoimage position accuracy and presented improvement plan and research task hereafter.

Feature-based Disparity Correction for the Visual Discomfort Minimization of Stereoscopic Video Camera (입체영상의 시각 피로 최소화를 위한 특징기반 시차 보정)

  • Jung, Eun-Kyung;Kim, Chang-Il;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.77-87
    • /
    • 2011
  • In this paper, we propose a disparity correction technique to reduce the inherent visual discomfort while watching stereoscopic videos. The visual discomfort must be solved for commercial 3D display systems to provide natural stereoscopic videos to human eyes. The proposed disparity correction technique consists of horizontal and vertical disparity corrections. The horizontal disparity correction is implemented by controlling the depth budget of stereoscopic video using the geometric relations of a stereoscopic camera system. In addition, the vertical disparity correction is implemented by using a feature-based stereo matching algorithm. Conventional vertical disparity corrections have been done by only using camera calibration parameters, which still cause systematic errors in vertical disparities. In this paper, we minimize the vertical disparity as small as possible by using a feature-based correction algorithm. Through the comparisons of conventional feature-based correction algorithms, we analyze the performance of the proposed technique.

Camera calibration parameters estimation using perspective variation ratio of grid type line widths (격자형 선폭들의 투영변화비를 이용한 카메라 교정 파라메터 추정)

  • Jeong, Jun-Ik;Choi, Seong-Gu;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.30-32
    • /
    • 2004
  • With 3-D vision measuring, camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. The first establishes reference points in space, and the second uses a grid type frame and statistical method. But, the former has difficulty to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. It can easily estimate camera calibration parameters such as lens distortion, focal length, scale factor, pose, orientations, and distance. The advantage of this algorithm is that it can estimate the distance of the object. Also, the proposed camera calibration method is possible estimate distance in dynamic environment such as autonomous navigation. To validate proposed method, we set up the experiments with a frame on rotator at a distance of 1, 2, 3, 4[m] from camera and rotate the frame from -60 to 60 degrees. Both computer simulation and real data have been used to test the proposed method and very good results have been obtained. We have investigated the distance error affected by scale factor or different line widths and experimentally found an average scale factor that includes the least distance error with each image. The average scale factor tends to fluctuate with small variation and makes distance error decrease. Compared with classical methods that use stereo camera or two or three orthogonal planes, the proposed method is easy to use and flexible. It advances camera calibration one more step from static environments to real world such as autonomous land vehicle use.

  • PDF

Accuracy Assessment of 3D Geo-positioning for SPOT-5 HRG Stereo Images Using Orbit-Attitude Model (궤도기반 모델을 이용한 SPOT-5 HGR 입체영상의 3차원 위치결정 정확도 평가)

  • Wie, Gwang-Jae;Kim, Deok-In;Lee, Ha-Joon;Jang, Yong-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.529-534
    • /
    • 2009
  • In this study, we investigate the feasibility of modeling entire image strips that has been acquired from the same orbital segments. We tested sensor models based on satellite orbit and attitude with different sets(Type1 ~ Type4) of unknowns. We checked the accuracy of orbit modeling by establishing sensor models of one scene using control points extracted from the scene and by applying the models to adjacent scenes within the same orbital segments. Results indicated that modeling of individual scenes with 1st or 2nd order unknowns was recommended. We tested the accuracy of around control points, digital map using the HIST-DPW (Hanjin Information Systems & Telecommunication Digital Photogrammetric Workstation) As a result, we showed that the orbit-based sensor model is a suitable sensor model for making 1/25,000 digital map.

Readability Enhancement Algorithm for Patterned Retarder based Stereoscopic 3D display (Patterned Retarder 방식 입체 디스플레이에서의 가독성 향상 기법)

  • Lee, Hui Jung;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.175-182
    • /
    • 2013
  • This paper proposes a readability enhancement filter for Patterned Retarder (PR) display. In general, when some texts in stereoscopic images are shown on PR display, their readability tends to be lowered. In order to overcome this problem, we present a readability enhancement algorithm which consists of readability filtering stage and post-processing stage for specific characters. First, each input stereo image is divided into an odd line image and an even line image. Then, they are independently up-scaled vertically by using Lanczos filter. Next, two up-scaled line images are averaged considering vertical phase difference. In post-processing stage, two specific characters which are normally difficult to read on PR display are detected, and they are filtered for additional readability enhancement. Here, this additional filtering is based on a specific brightness adjustment, and is applied only for two characters. The experiment results show that the proposed method achieves significant improvement in terms of readability in comparison with the previous scheme.