• Title/Summary/Keyword: 3D stereo

Search Result 805, Processing Time 0.027 seconds

Multiple Plane Area Detection Using Self Organizing Map (자기 조직화 지도를 이용한 다중 평면영역 검출)

  • Kim, Jeong-Hyun;Teng, Zhu;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.22-30
    • /
    • 2011
  • Plane detection is very important information for mission-critical of robot in 3D environment. A representative method of plane detection is Hough-transformation. Hough-transformation is robust to noise and makes the accurate plane detection possible. But it demands excessive memory and takes too much processing time. Iterative randomized Hough-transformation has been proposed to overcome these shortcomings. This method doesn't vote all data. It votes only one value of the randomly selected data into the Hough parameter space. This value calculated the value of the parameter of the shape that we want to extract. In Hough parameters space, it is possible to detect accurate plane through detection of repetitive maximum value. A common problem in these methods is that it requires too much computational cost and large number of memory space to find the distribution of mixed multiple planes in parameter space. In this paper, we detect multiple planes only via data sampling using Self Organizing Map method. It does not use conventional methods that include transforming to Hough parameter space, voting and repetitive plane extraction. And it improves the reliability of plane detection through division area searching and planarity evaluation. The proposed method is more accurate and faster than the conventional methods which is demonstrated the experiments in various conditions.

Highly Dense 3D Surface Generation Using Multi-image Matching

  • Noh, Myoung-Jong;Cho, Woo-Sug;Bang, Ki-In
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.87-97
    • /
    • 2012
  • This study presents an automatic matching method for generating a dense, accurate, and discontinuity-preserved digital surface model (DSM) using multiple images acquired by an aerial digital frame camera. The proposed method consists of two main procedures: area-based multi-image matching (AMIM) and stereo-pair epipolar line matching (SELM). AMIM evaluates the sum of the normalized cross correlation of corresponding image points from multiple images to determine the optimal height of an object point. A novel method is introduced for determining the search height range and incremental height, which are necessary for the vertical line locus used in the AMIM. This procedure also includes the means to select the best reference and target images for each strip so that multi-image matching can resolve the common problem over occlusion areas. The SELM extracts densely positioned distinct points along epipolar lines from the multiple images and generates a discontinuity-preserved DSM using geometric and radiometric constraints. The matched points derived by the AMIM are used as anchor points between overlapped images to find conjugate distinct points using epipolar geometry. The performance of the proposed method was evaluated for several different test areas, including urban areas.

The Development of Device and the Algorithm for the Haptic Rendering (가상현실 역감구현을 위한 알고리즘과 장치개발)

  • 김영호;이경백;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.106-109
    • /
    • 2000
  • The virtual reality - haptic device is developed for the purpose used in the work that human cannot approach and that need elaborate exercises. To render haptic, the total system is constituted master, haptic device, and slave, remote manipulator. Human operates the remote manipulator. Human operates the remote manipulator relying on the hapti devices and stereo graphic. And then the force and scene of the remote manipulator is fed-back from each haptic devices and virtual devices. The feedback information gets system gain exactly. The system gain provides the most exact haptic and virtual devices. The feedback information gets system gain exactly. The system gain provides the most exact haptic and scene to human by the location, the graphic rendering and the haptic rendering algorithm on real-time. In this research, 3D haptic device is developed for common usage and make human feel the haptic when human contacts virtual object rendered by computer graphic. The haptic device is good for tracing location and producing devices because of the row structure. Also, openGL and Visual Basic is utilized to the algorithms for haptic rendering. The haptic device of this research makes the interface possible not only with virtual reality but also with the real remote manipulator.

  • PDF

Simultaneous Tracking of Multiple Construction Workers Using Stereo-Vision (다수의 건설인력 위치 추적을 위한 스테레오 비전의 활용)

  • Lee, Yong-Ju;Park, Man-Woo
    • Journal of KIBIM
    • /
    • v.7 no.1
    • /
    • pp.45-53
    • /
    • 2017
  • Continuous research efforts have been made on acquiring location data on construction sites. As a result, GPS and RFID are increasingly employed on the site to track the location of equipment and materials. However, these systems are based on radio frequency technologies which require attaching tags on every target entity. Implementing the systems incurs time and costs for attaching/detaching/managing the tags or sensors. For this reason, efforts are currently being made to track construction entities using only cameras. Vision-based 3D tracking has been presented in a previous research work in which the location of construction manpower, vehicle, and materials were successfully tracked. However, the proposed system is still in its infancy and yet to be implemented on practical applications for two reasons. First, it does not involve entity matching across two views, and thus cannot be used for tracking multiple entities, simultaneously. Second, the use of a checker board in the camera calibration process entails a focus-related problem when the baseline is long and the target entities are located far from the cameras. This paper proposes a vision-based method to track multiple workers simultaneously. An entity matching procedure is added to acquire the matching pairs of the same entities across two views which is necessary for tracking multiple entities. Also, the proposed method simplified the calibration process by avoiding the use of a checkerboard, making it more adequate to the realistic deployment on construction sites.

Diffusion Distance Based Disparity Search Range Estimation for Stereo Video (확산 거리 기반의 스테레오 비디오의 변이 탐색 범위 추정 방법)

  • Li, Ruei-Hung;Ham, Bumsub;Kim, Bingjo;Kang, Minsung;Sohn, Kwanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.87-90
    • /
    • 2012
  • 본 논문에서는 깊이 변화에 강인한 스테레오 비디오의 변이 탐색 범위 추정 방법을 제안한다. 정확한 스테레오 비디오의 변이 탐색 범위는 3D 영상 분야에서 다양한 응용으로 사용되는 변이 지도를 보다 정확하게 추정하는데 도움이 된다. 기존의 변이 탐색 범위 추정 방법은 인접한 프레임 간의 변이 히스토그램의 유사도를 이용함으로써 보다 안정적인 변이 탐색 범위를 추정할 수 있었지만, 시간의 흐름에 따라 깊이가 변하는 부분에서는 상당히 취약한 문제점을 가지고 있다. 이에 본 논문에서는 기존 방법의 이러한 문제점을 개선한 새로운 방법을 제안한다. 제안하는 방법은 변이 히스토그램의 유사도뿐만 아니라 프레임 간의 시간적 유사도를 고려하며, 비디오의 장면 전환에 의한 급격한 깊이 변화 또한 고려한다. 이에 추가적으로 변이 히스토그램의 유사도를 계산하기 위해 기존의 방법과는 달리 히스토그램 확산 거리를 이용하였으며, 서로 다른 개수의 대응점을 가지고 있는 프레임간의 변이 히스토그램이 대응점의 개수에 영향을 받지 않고 균일한 중요도를 갖도록 하였다. 실험 결과로 기존 방법과 제안한 방법의 변이 탐색 범위 추정 결과를 비교하였으며, 비교한 결과는 제안한 방법이 기존 방법에 비해 스테레오 비디오의 깊이 변화에 강인함을 보여준다.

  • PDF

The Study of Favorite School Uniform Design and the Survey of Actual State in Uniform of Middle and High School Girls in Seoul (여자 중.고등학생의 교복착용실태 및 선호하는 교복디자인 연구 -서울시내 여자 중.고등학생을 대상으로-)

  • 박현숙;성화경
    • Journal of Korean Home Economics Education Association
    • /
    • v.6 no.2
    • /
    • pp.85-108
    • /
    • 1994
  • This study intends to provide sources which enable students to satisfy uniform design as I surveyed preferable uniform design and degree of satisfaction of uniform design to students. The subjects were gathered into 91 middle-high schools and surveys were done among 400 school girls. The results are as follows; 1)The survey of uniform which students wear. For jacket, tailored collar which is single breasted is most common and for blouse, puff sleeve, soutein collar, shirt collar is common. For skirt, lastly, they usually wear side pleats skirt. 2) Thoughts of uniform students preferred uniform to casual. The merit of wearing uniform can represent themselves as the ‘students’on the other hand, the demerit is shown that uniform is inconvenient enough to move. 3)Preference of uniform design. Students prefer tailored jacket, shirt blouse, flare skirt. Basing on these results above, I’d like to suggest something about uniform. The demerit of wearing uniform lies in inconvenience. It would weaken the degree of satisfaction of uniform and have a negative influence on students in physical and mental side. So we have to find out the concrete problems, at the same time, develop measurable study which fit for body. Adolescence is period of developing and establishing self. So they really need rather creative educational atmosphere than stereo typed-control. Reflecting this opinion, Clothing habits can play an important role and in future it is desirable to have students wear not uniform but casual.

  • PDF

Hole-Filling Methods Using Depth and Color Information for Generating Multiview Images

  • Nam, Seung-Woo;Jang, Kyung-Ho;Ban, Yun-Ji;Kim, Hye-Sun;Chien, Sung-Il
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.996-1007
    • /
    • 2016
  • This paper presents new hole-filling methods for generating multiview images by using depth image based rendering (DIBR). Holes appear in a depth image captured from 3D sensors and in the multiview images rendered by DIBR. The holes are often found around the background regions of the images because the background is prone to occlusions by the foreground objects. Background-oriented priority and gradient-oriented priority are also introduced to find the order of hole-filling after the DIBR process. In addition, to obtain a sample to fill the hole region, we propose the fusing of depth and color information to obtain a weighted sum of two patches for the depth (or rendered depth) images and a new distance measure to find the best-matched patch for the rendered color images. The conventional method produces jagged edges and a blurry phenomenon in the final results, whereas the proposed method can minimize them, which is quite important for high fidelity in stereo imaging. The experimental results show that, by reducing these errors, the proposed methods can significantly improve the hole-filling quality in the multiview images generated.

Development of Roadside Facility Management System with Video GIS Technology

  • Joo, In-Hak;Nam, Kwang-Woo;Yoo, Jae-Jun;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.169-174
    • /
    • 2002
  • In this paper, we suggest a new spatial information system called video GIS where video is used for spatial data construction and is integrated with map. We develop a prototype system of video GIS and apply it to roadside facility management. The main functions supported by the suggested system are data collection, coordinate calculation and conversion, data construction, analysis, searching, and browsing. The stereo images and corresponding position data are collected by a vehicle named 4S-Van that has GPS, IMU, and cameras. The 3-D coordinates of the objects in the images, such as road sign, signal lamp, and building, can be calculated and constructed from the collected data. The spatial objects are displayed on both image and map, and can be searched and browsed, which enables visual and realistic browsing and management of spatial objects. Compared to conventional field survey used in roadside facility management, the method enables faster, easier, and more efficient construction of spatial data. The suggested video GIS can be applied not only to roadside facility management but also to many similar projects of central or local governments that are related to GIS.

  • PDF

Online Multi-view Range Image Registration using Geometric and Photometric Feature Tracking (3차원 기하정보 및 특징점 추적을 이용한 다시점 거리영상의 온라인 정합)

  • Baek, Jae-Won;Moon, Jae-Kyoung;Park, Soon-Yong
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.493-502
    • /
    • 2007
  • An on-line registration technique is presented to register multi-view range images for the 3D reconstruction of real objects. Using a range camera, we first acquire range images and photometric images continuously. In the range images, we divide object and background regions using a predefined threshold value. For the coarse registration of the range images, the centroid of the images are used. After refining the registration of range images using a projection-based technique, we use a modified KLT(Kanade-Lucas-Tomasi) tracker to match photometric features in the object images. Using the modified KLT tracker, we can track image features fast and accurately. If a range image fails to register, we acquire new range images and try to register them continuously until the registration process resumes. After enough range images are registered, they are integrated into a 3D model in offline step. Experimental results and error analysis show that the proposed method can be used to reconstruct 3D model very fast and accurately.

A Robust Object Detection and Tracking Method using RGB-D Model (RGB-D 모델을 이용한 강건한 객체 탐지 및 추적 방법)

  • Park, Seohee;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.61-67
    • /
    • 2017
  • Recently, CCTV has been combined with areas such as big data, artificial intelligence, and image analysis to detect various abnormal behaviors and to detect and analyze the overall situation of objects such as people. Image analysis research for this intelligent video surveillance function is progressing actively. However, CCTV images using 2D information generally have limitations such as object misrecognition due to lack of topological information. This problem can be solved by adding the depth information of the object created by using two cameras to the image. In this paper, we perform background modeling using Mixture of Gaussian technique and detect whether there are moving objects by segmenting the foreground from the modeled background. In order to perform the depth information-based segmentation using the RGB information-based segmentation results, stereo-based depth maps are generated using two cameras. Next, the RGB-based segmented region is set as a domain for extracting depth information, and depth-based segmentation is performed within the domain. In order to detect the center point of a robustly segmented object and to track the direction, the movement of the object is tracked by applying the CAMShift technique, which is the most basic object tracking method. From the experiments, we prove the efficiency of the proposed object detection and tracking method using the RGB-D model.