• Title/Summary/Keyword: 3D sensing

Search Result 693, Processing Time 0.026 seconds

Modelling land degradation in the mountainous areas

  • Shrestha, D.P.;Zinck, J.A.;Ranst, E. Van
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.817-819
    • /
    • 2003
  • Land degradation is a crucial issue in mountainous areas and is manifested in a variety of processes. For its assessment, application of existing models is not straightforward. In addition, data availability might be a problem. In this paper, a procedure for land degradation assessment is described, which follows a four-step approach: (1) detection, inventory and mapping of land degradation features, (2) assessing the magnitude of soil loss, (3) study of causal factors, and (4) hazard assessment by applying decision trees. This approach is applied to a case study in the Middle Mountain region of Nepal. The study shows that individual mass movement features such as debris slides and slumps can be easily mapped by photo interpretation techniques. Application of soil loss estimation models helps get insight on the magnitude of soil losses. In the study area soil losses are higher in rainfed crops on sloping terraces (highest soil loss is 32 tons/ha/yr) and minimal under dense forest and in irrigated rice fields (less than 1 ton/ha/yr). However there is high frequency of slope failures in the form of slumps in the rice fields. Debris slides are more common on south-facing slopes under rainfed agriculture or in degraded forest. Field evidences and analysis of causal factors for land degradation helps in building decision trees, the use of which for modelling land degradation has the advantage that attributes can be ranked and tested according to their importance. In addition, decision trees are simple to construct, easy to implement and very flexible in adaptations.

  • PDF

Low Cost Alcoholic Breath Sensor Based on SnO2 Modified with CNTs and Graphene

  • Morsy, M.;Yahia, I. S.;Zahran, H.Y.;Ibrahim, M.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1437-1443
    • /
    • 2018
  • In this work, $SnO_2$ modified with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) separately and combined sensitized by using the co-precipitation method and their sensing behavior toward ethanol vapor at room temperature were investigated. An interdigitated electrode (IDE) gold substrate is very expensive compared to a fluorine doped tin oxide (FTO) substrate; hence, we used the latter to reduce the fabrication cost. The structure and the morphology of the studied materials were characterized by using differential thermal analyses (DTA) and thermogravimetric analysis (TGA), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller surface area and Barrett-Joyner-Halenda (BJH) pore size measurements. The studied composites were subjected to ethanol in its gas phase at concentrations from 10 to 200 ppm. The present composites showed high-performance sensitivity for many reasons: the incorporation of $SnO_2$ and CNTs which prevents the agglomeration of rGO sheets, the formation of a 3D mesopourus structure and an increase in the surface area. The decoration with rGO and CNTs led to more active sites, such as vacancies, which increased the adsorption of ethanol gas. In addition, the mesopore structure and the nano size of the $SnO_2$ particles allowed an efficient diffusion of gases to the active sites. Based on these results, the present composites should be considered as efficient and low-cost sensors for alcohol.

Heterostructures of SnO2-Decorated Cr2O3 Nanorods for Highly Sensitive H2S Detection (고감도 H2S 감지를 위한 SnO2 장식된 Cr2O3 nanorods 이종구조)

  • Jae Han Chung;Yun-Haeng Cho;Junho Hwang;Su hyeong Lee;Seunggi Lee;See-Hyung Park;Sungwoo Sohn;Donghwi Cho;Kwangjae Lee;Young-Seok Shim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2024
  • The creation of vertically aligned one-dimensional (1D) nanostructures through the decoration of n-type tin oxide (SnO2) on p-type chromium oxide (Cr2O3) constitutes an effective strategy for enhancing gas sensing performance. These heterostructures are deposited in multiple stages using a glancing angle deposition technique with an electron beam evaporator, resulting in a reduction in the surface porosity of the nanorods as SnO2 is incorporated. In comparison to Cr2O3 films, the bare Cr2O3 nanorods exhibits a response 3.3 times greater to 50 ppm H2S at 300℃, while the SnO2-decorated Cr2O3 nanorods demonstrate an eleven-fold increase in response. Furthermore, when subjected to various gases (CH4, H2S, CO2, H2), a notable selectivity toward H2S is observed. This study paves the way for the development of p-type semiconductor sensors with heightened selectivity and sensitivity towards H2S, thus advancing the prospects of gas sensor technology.

True Orthoimage Generation from LiDAR Intensity Using Deep Learning (딥러닝에 의한 라이다 반사강도로부터 엄밀정사영상 생성)

  • Shin, Young Ha;Hyung, Sung Woong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.363-373
    • /
    • 2020
  • During last decades numerous studies generating orthoimage have been carried out. Traditional methods require exterior orientation parameters of aerial images and precise 3D object modeling data and DTM (Digital Terrain Model) to detect and recover occlusion areas. Furthermore, it is challenging task to automate the complicated process. In this paper, we proposed a new concept of true orthoimage generation using DL (Deep Learning). DL is rapidly used in wide range of fields. In particular, GAN (Generative Adversarial Network) is one of the DL models for various tasks in imaging processing and computer vision. The generator tries to produce results similar to the real images, while discriminator judges fake and real images until the results are satisfied. Such mutually adversarial mechanism improves quality of the results. Experiments were performed using GAN-based Pix2Pix model by utilizing IR (Infrared) orthoimages, intensity from LiDAR data provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) through the ISPRS (International Society for Photogrammetry and Remote Sensing). Two approaches were implemented: (1) One-step training with intensity data and high resolution orthoimages, (2) Recursive training with intensity data and color-coded low resolution intensity images for progressive enhancement of the results. Two methods provided similar quality based on FID (Fréchet Inception Distance) measures. However, if quality of the input data is close to the target image, better results could be obtained by increasing epoch. This paper is an early experimental study for feasibility of DL-based true orthoimage generation and further improvement would be necessary.

Analysis of Optimal Pathways for Terrestrial LiDAR Scanning for the Establishment of Digital Inventory of Forest Resources (디지털 산림자원정보 구축을 위한 최적의 지상LiDAR 스캔 경로 분석)

  • Ko, Chi-Ung;Yim, Jong-Su;Kim, Dong-Geun;Kang, Jin-Taek
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.245-256
    • /
    • 2021
  • This study was conducted to identify the applicability of a LiDAR sensor to forest resources inventories by comparing data on a tree's position, height, and DBH obtained by the sensor with those by existing forest inventory methods, for the tree species of Criptomeria japonica in Jeolmul forest in Jeju, South Korea. To this end, a backpack personal LiDAR (Greenvalley International, Model D50) was employed. To facilitate the process of the data collection, patterns of collecting the data by the sensor were divided into seven ones, considering the density of sample plots and the work efficiency. Then, the accuracy of estimating the variables of each tree was assessed. The amount of time spent on acquiring and processing the data by each method was compared to evaluate the efficiency. The findings showed that the rate of detecting standing trees by the LiDAR was 100%. Also, the high statistical accuracy was observed in both Pattern 5 (DBH: RMSE 1.07 cm, Bias -0.79 cm, Height: RMSE 0.95 m, Bias -3.2 m), and Pattern 7 (DBH: RMSE 1.18 cm, Bias -0.82 cm, Height: RMSE 1.13 m, Bias -2.62 m), compared to the results drawn in the typical inventory manner. Concerning the time issue, 115 to 135 minutes per 1ha were taken to process the data by utilizing the LiDAR, while 375 to 1,115 spent in the existing way, proving the higher efficiency of the device. It can thus be concluded that using a backpack personal LiDAR helps increase efficiency in conducting a forest resources inventory in an planted coniferous forest with understory vegetation, implying a need for further research in a variety of forests.

Building Change Detection Methodology in Urban Area from Single Satellite Image (단일위성영상 기반 도심지 건물변화탐지 방안)

  • Seunghee Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1097-1109
    • /
    • 2023
  • Urban is an area where small-scale changes to individual buildings occur frequently. An existing urban building database requires periodic updating to increase its usability. However, there are limitations in data collection for building changes over a wide urban. In this study, we check the possibility of detecting building changes and updating a building database by using satellite images that can capture a wide urban region by a single image. For this purpose, building areas in a satellite image are first extracted by projecting 3D coordinates of building corners available in a building database onto the image. Building areas are then divided into roof and facade areas. By comparing textures of the roof areas projected, building changes such as height change or building removal can be detected. New height values are estimated by adjusting building heights until projected roofs align to actual roofs observed in the image. If the projected image appeared in the image while no building is observed, it corresponds to a demolished building. By checking buildings in the original image whose roofs and facades areas are not projected, new buildings are identified. Based on these results, the building database is updated by the three categories of height update, building deletion, or new building creation. This method was tested with a KOMPSAT-3A image over Incheon Metropolitan City and Incheon building database available in public. Building change detection and building database update was carried out. Updated building corners were then projected to another KOMPSAT-3 image. It was confirmed that building areas projected by updated building information agreed with actual buildings in the image very well. Through this study, the possibility of semi-automatic building change detection and building database update based on single satellite image was confirmed. In the future, follow-up research is needed on technology to enhance computational automation of the proposed method.

Sensing Characteristics of $SnO_{2}$ type CO sensors for combustion exhaust gases monitoring (연소배가스 모니터링을 위한 $SnO_{2}$계 CO센서의 검지특성)

  • Kim, I.J.;Han, S.D.;Lim, H.J.;Son, Y.M.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.369-375
    • /
    • 1997
  • $V_{2}O_{5}/ThO_{2}/Pd$-doped $SnO_{2}$ sensor has a good selectivity and stability to CO at high sensor temperature of about $500^{\circ}C$, and shows rapid response. In particular, many kinds of interference gases, such as $NO_{x}$, $C_{3}H_{8}$, $CH_{4}$ and $SO_{2}$ have been found to give only a slight influence on the sensor selectivity to CO gas sensitivity by doped $V_{2}O_{5}$ (3.0 wt.%). For the sensor we used well-known thick film technological route with $V_{2}O_{5}$(3.0 wt.%), Pd(1.0 wt.%) and $ThO_{2}$(l.5 wt.%) as catalytic materials. In the case of mixed $NO_{x}$-CO gases, as combustion exhaust gas, only CO detection by $SnO_{2}$ type semiconductor sensor is generally very difficult because of $NO_{x}$ interference. The developed sensors can use to measure the exhausting gas of the automobile or the boiler for the Air-to-Fuel ratio control.

  • PDF

A Study on Local Three-Dimensional Visualization Methodology for Effective Analysis of Construction Environments in Extreme Cold Regions (효과적인 극한지 건설환경 분석을 위한 현지 3차원 가시화 방안 연구)

  • Kim, Eui Myoung;Lee, Woo Sik;Hong, Chang Hee
    • Spatial Information Research
    • /
    • v.20 no.6
    • /
    • pp.129-137
    • /
    • 2012
  • For construction project in extreme cold region, it is essential to establish basic data on the site such as topographical data from the early stage of construction of planning and designing, and it is needed to frequently perform site investigation when necessary. However, extreme cold regions are characteristic of being at long distance and difficult in approaching, and special regions such as Antarctica, in particular, are hard to conduct site investigation. Although a site investigation may be conducted, those who can visit Antarctica are sufficiently limited so that most of the staff may participate in construction without knowledge of the site and increase the risk of errors in decision making or designing. In order to resolve such problems, the authors in this study identified methods of building wide-area topographical data and bedrock classification data of exposed areas via remote sensing and of building precise topographical data on the construction site. Also, the authors attempted to present methods by which such data can be managed and visualized integrally via three-dimensional GIS technology and all the participants in construction can learn sense of field and conduct necessary analysis as frequent as possible. The areas around the Jangbogo Antarctic Station were selected to be the research area for conducting effective integrational management and three-dimensional visualization of various spatial data such as wide-area digital elevation model, ortho-images, bedrock classification data, local precise digital elevation model, and site images. The results of this study may enable construction firms to analyze local environments for construction whenever they need for construction in extreme cold regions and then support construction work including decision making or designing.

Current Status and Outlook of the Space Economy (우주분야 연구개발 및 산업동향)

  • Choi, Soo-Mi
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.3-13
    • /
    • 2008
  • The year 2007 marked two important anniversaries for space. The Soviet Union launched Sputnik 50 years ago on October 4. 1957. The 40th anniversary of the United Nations treaty on outer space was also marked in 2007. 2008 and 2007 were full of dramatic events of space activity as well : Success of Japan's first large lunar explorer 'KAGUYA'(SELENE) and China's 'Chang'e 1', launch of ISS laboratory module, 'Colombus' and 'Kibo', test of China's ASAT, and success of Korea's first astronaut program and so on. International government space budgets reached $78.3 billion in 2007, a strong growth rate of 36% over 2006, and the recently released Global Exploration Strategy, The Framework for Coordination is a set of guidelines for international cooperation among 14 of the world's space agencies. Worldwide space industry revenue grew by 20% over 2005, $106.1 billion in 2006 and $173.9 billion expected in 2007. This paper discusses the issues related to the Earth observation R&D trend and market in detail. Korea's 2008 government space spending is \316.4 billion, 2007 space industry revenue was $106 million. Several research projects are now underway and STSAT 2 will be launched by KSLV-1 at the Naro Space Center within this year.

  • PDF

Effect of Total Resistance of Electrochemical Cell on Electrochemical Impedance of Reinforced Concrete Using a Three-Electrode System (3전극방식을 활용한 철근 콘크리트의 교류임피던스 측정 시 전기화학 셀저항의 영향)

  • Khan, Md. Al-Masrur;Kim, Je-Kyoung;Yee, Jurng-Jae;Kee, Seong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.82-92
    • /
    • 2022
  • This study aims to investigate the effect of total electrochemical cell resistance (TECR) on electrochemical impedance (EI) measurements of reinforced concrete (RC) by electrochemical impedance spectroscopy (EIS) using a three-electrode system. A series of experimental study is performed to measure electrochemical behavior of a steel bar embedded in a concrete cube specimen, with a side length of 200 mm, in various experimental conditions. Main variables include concrete dry conditions, coupling resistance between sensing electrodes and concrete surface, and area of the counter electrode. It is demonstrated that EI values remains stable when the compliant voltage of a measuring device is sufficiently great compared to the potential drop caused by TECR of concrete specimens. It is confirmed that the effect of the coupling resistance of TECR is far more influential than other two factors (concrete dry conditions and area of the counter electrode). The results in this study can be used as a fundamental basis for development of a surface-mount sensor for corrosion monitoring of reinforced concrete structures exposed to wet-and-dry cycles under marine environment.