• Title/Summary/Keyword: 3D scans data

Search Result 82, Processing Time 0.031 seconds

High Resolution 3D Magnetic Resonance Fingerprinting with Hybrid Radial-Interleaved EPI Acquisition for Knee Cartilage T1, T2 Mapping

  • Han, Dongyeob;Hong, Taehwa;Lee, Yonghan;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.3
    • /
    • pp.141-155
    • /
    • 2021
  • Purpose: To develop a 3D magnetic resonance fingerprinting (MRF) method for application in high resolution knee cartilage PD, T1, T2 mapping. Materials and Methods: A novel 3D acquisition trajectory with golden-angle rotating radial in kxy direction and interleaved echo planar imaging (EPI) acquisition in the kz direction was implemented in the MRF framework. A centric order was applied to the interleaved EPI acquisition to reduce Nyquist ghosting artifact due to field inhomogeneity. For the reconstruction, singular value decomposition (SVD) compression method was used to accelerate reconstruction time and conjugate gradient sensitivity-encoding (CG-SENSE) was performed to overcome low SNR of the high resolution data. Phantom experiments were performed to verify the proposed method. In vivo experiments were performed on 6 healthy volunteers and 2 early osteoarthritis (OA) patients. Results: In the phantom experiments, the T1 and T2 values of the proposed method were in good agreement with the spin-echo references. The results from the in vivo scans showed high quality proton density (PD), T1, T2 map with EPI echo train length (NETL = 4), acceleration factor in through plane (Rz = 5), and number of radial spokes (Nspk = 4). In patients, high T2 values (50-60 ms) were seen in all transverse, sagittal, and coronal views and the damaged cartilage regions were in agreement with the hyper-intensity regions shown on conventional turbo spin-echo (TSE) images. Conclusion: The proposed 3D MRF method can acquire high resolution (0.5 mm3) quantitative maps in practical scan time (~ 7 min and 10 sec) with full coverage of the knee (FOV: 160 × 160 × 120 mm3).

The Comparison of User Preference on Domestic versus a Foreign 3D Virtual Try-On System (국내외 3차원 가상 의복 착장시스템에 대한 선호도 비교)

  • Do, Wol-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.7
    • /
    • pp.1184-1196
    • /
    • 2010
  • Several applications of body scanning technology have been commercialized or are currently under development. The virtual fit from 3D scans is most advanced form of virtual try-on. This article is an analysis of the comparison of user preferences for domestic versus foreign 3D virtual try-on systems. For this study, domestic i-Fashion Mall (www.ifashionmall.co.kr) and a Canadian company, My Virtual Model (www.mvm.com) were selected as the most representative online retailers that offer a virtual try-on system. The respondents were comprised of 70 Korean female college students in the age group 20-29. A five point Likert scale was used to evaluate the degree of the preference of virtual avatar and try-on images. T-test, cross table, and a chi-square independence test were conducted for data analysis. The results are as follow. 1. The representation about current looks according to each virtual fit image indicates that MVM is more accurate than i-Fashion Mall. 2. About decision confidence, respondents have decision confidence in i-Fashion Mall in the case of the avatar image; however, respondents have confidence in MVM or the fit image. 3. There were no significant differences in among waist size groups in accuracy, trust of each avatar image, while there were significant differences among waist size groups in the accuracy and trust of each virtual fit image. 4. About ease of use, respondents answered that i-Fashion Mall is superior to MVM. 5. The respondents prioritized the ‘fitting report’ of i-Fashion Mall and ‘Weight loss’ of MVM over other functionalities.

An Analysis on the Measurement and Factors of the Foot for Korean Female especially Focusing on the Patients of the Hallux Valgus (한국 성인여성 중 무지외반증으로 인한 발 변형환자의 수술 전·후 발부위 계측치 및 요인분석)

  • Kim, Hyesoo;Kim, Sonhee
    • Journal of Fashion Business
    • /
    • v.19 no.4
    • /
    • pp.200-212
    • /
    • 2015
  • In order to study the foot deformity hallux valgus, the rate of which is currently increasing, 235 patients who were diagnosed with hallux valgus and treated in an orthopedic hospital in Seoul had their feet calibrated before and after surgery using 3d radio-scans. Data from 209 cases was analyzed and scored numerically. We scored 10 items for length, 4 for width, 3 for angle, and 2 for height, for a total of 20 items. Each individual's feet showed great variation in most of the items and significant differences after surgery, especially in regards to length and height, which increased after surgery. Angle, width, and length of the distal parts of the toes decreased after surgery. Based on the results of our analysis, we conclude that surgery brings about significant changes in structure and measurement of feet. This research confirmed that there is significant variation in foot form and individual differences based on lesion size and location and, thus, it is difficult for hallux valgus patients to find ready-made shoes that fit them properly. Foot changes before and after operation for hallux valgus were analyzed and the results quantified; our results should be considered during product design by shoe companies whose target is adult women.

The utility of three-dimensional models in complex microsurgical reconstruction

  • Ogunleye, Adeyemi A.;Deptula, Peter L.;Inchauste, Suzie M.;Zelones, Justin T.;Walters, Shannon;Gifford, Kyle;LeCastillo, Chris;Napel, Sandy;Fleischmann, Dominik;Nguyen, Dung H.
    • Archives of Plastic Surgery
    • /
    • v.47 no.5
    • /
    • pp.428-434
    • /
    • 2020
  • Background Three-dimensional (3D) model printing improves visualization of anatomical structures in space compared to two-dimensional (2D) data and creates an exact model of the surgical site that can be used for reference during surgery. There is limited evidence on the effects of using 3D models in microsurgical reconstruction on improving clinical outcomes. Methods A retrospective review of patients undergoing reconstructive breast microsurgery procedures from 2017 to 2019 who received computed tomography angiography (CTA) scans only or with 3D models for preoperative surgical planning were performed. Preoperative decision-making to undergo a deep inferior epigastric perforator (DIEP) versus muscle-sparing transverse rectus abdominis myocutaneous (MS-TRAM) flap, as well as whether the decision changed during flap harvest and postoperative complications were tracked based on the preoperative imaging used. In addition, we describe three example cases showing direct application of 3D mold as an accurate model to guide intraoperative dissection in complex microsurgical reconstruction. Results Fifty-eight abdominal-based breast free-flaps performed using conventional CTA were compared with a matched cohort of 58 breast free-flaps performed with 3D model print. There was no flap loss in either group. There was a significant reduction in flap harvest time with use of 3D model (CTA vs. 3D, 117.7±14.2 minutes vs. 109.8±11.6 minutes; P=0.001). In addition, there was no change in preoperative decision on type of flap harvested in all cases in 3D print group (0%), compared with 24.1% change in conventional CTA group. Conclusions Use of 3D print model improves accuracy of preoperative planning and reduces flap harvest time with similar postoperative complications in complex microsurgical reconstruction.

Analysis of Adverse Reactions to Computed Tomography Contrast Medium (컴퓨터 단층촬영에 사용되는 조영제의 부작용 발생에 대한 분석)

  • Kwon, Ki-Soo;Jeong, Jae-Sim
    • Journal of Korean Biological Nursing Science
    • /
    • v.6 no.2
    • /
    • pp.57-68
    • /
    • 2004
  • The contrast medium is very commonly used in more than 90% of computed tomography(CT) scans. It is difficult to predict the occurrence of adverse reactions and the degree of adverse reactions are diverse from mild urticaria, itching, nausea, vomiting to even cardiopulmonary arrest. The purpose of this study was to evaluate the symptoms, occurrence rate and risk factors of the adverse reactions in patients after contrast injection during CT examinations. Two hundreds sixty-five patients showed symptoms of adverse reactions out of 71,117 adult patients who received intravenous contrast administration during CT scans from January 2003 to December 2003 at a general hospital. Data was collected by reviewing adverse reaction records and electronic medical record. The results of this study were as follows; 1. Adverse reactions occurred in 265 out of a total of 71,117 patients(0.37%). Clinical symptoms of adverse reactions were most commonly dermatologic problems such as urticaria(69.81%) and itching(63.02%), followed by dyspnea(14.34%), dizziness(11.70%), nausea(6.79%), and vomiting(7.17%). 2. Anaphylactoid reactions occurred in 47 out of a total of 265 patients, and their pattern of symptoms were most commonly related to cardiovascular system(90.91%), followed by respiratory system(82.22%), gastrointestinal system(51.72%), and dermatologic system(16.51%). Eleven patients were transferred to emergency room for further treatment and two patients needed cardiopulmonary resuscitation. 3. The adverse reactions were significantly more common in women than in men(0.46% vs.0.32%, p=.003) and in type D contrast medium than the others(p<.001). The occurrence rate of adverse reactions was not significantly different according to the age and infusion speed of the contrast medium.

  • PDF

Reproducibility of the sella turcica landmark in three dimensions using a sella turcica-specific reference system

  • Pittayapat, Pisha;Jacobs, Reinhilde;Odri, Guillaume A.;Vasconcelos, Karla De Faria;Willems, Guy;Olszewski, Raphael
    • Imaging Science in Dentistry
    • /
    • v.45 no.1
    • /
    • pp.15-22
    • /
    • 2015
  • Purpose: This study was performed to assess the reproducibility of identifying the sella turcica landmark in a three-dimensional (3D) model by using a new sella-specific landmark reference system. Materials and Methods: Thirty-two cone-beam computed tomographic scans (3D Accuitomo$^{(R)}$ 170, J. Morita, Kyoto, Japan) were retrospectively collected. The 3D data were exported into the Digital Imaging and Communications in Medicine standard and then imported into the Maxilim$^{(R)}$ software (Medicim NV, Sint-Niklaas, Belgium) to create 3D surface models. Five observers identified four osseous landmarks in order to create the reference frame and then identified two sella landmarks. The x, y, and z coordinates of each landmark were exported. The observations were repeated after four weeks. Statistical analysis was performed using the multiple paired t-test with Bonferroni correction (intraobserver precision: p<0.005, interobserver precision: p<0.0011). Results: The intraobserver mean precision of all landmarks was <1 mm. Significant differences were found when comparing the intraobserver precision of each observer (p<0.005). For the sella landmarks, the intraobserver mean precision ranged from $0.43{\pm}0.34mm$ to $0.51{\pm}0.46mm$. The intraobserver reproducibility was generally good. The overall interobserver mean precision was <1 mm. Significant differences between each pair of observers for all anatomical landmarks were found (p<0.0011). The interobserver reproducibility of sella landmarks was good, with >50% precision in locating the landmark within 1 mm. Conclusion: A newly developed reference system offers high precision and reproducibility for sella turcica identification in a 3D model without being based on two-dimensional images derived from 3D data.

From TMJ to 3D Digital Smile Design with Virtual Patient Dataset for diagnosis and treatment planning (가상환자 데이터세트를 기반으로 악관절과 심미를 고려한 진단 및 치료계획 수립)

  • Lee, Soo Young;Kang, Dong Huy;Lee, Doyun;Kim, Heechul
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.30 no.2
    • /
    • pp.71-90
    • /
    • 2021
  • The virtual patient dataset is a collection of diagnostic data from various sources acquired from a single patient into a coordinate system of three-dimensional visualization. Virtual patient dataset makes it possible to establish a treatment plan, simulate various treatment procedures, and create a treatment planning delivery device. Clinicians can design and simulate a patient's smile on the virtual patient dataset and select the optimal result from the diagnostic process. The selected treatment plan can be delivered identically to the patient using manufacturing techniques such as 3D printing, milling, and injection molding. The delivery of this treatment plan can be linked to the final prosthesis through mockup confirmation through provisional restoration fabrication and delivery in the patient's mouth. In this way, if the diagnostic data superimposition and processing accuracy during the manufacturing process are guaranteed, 3D digital smile design simulated in 3D visualization can be accurately delivered to the real patient. As a clinical application method of the virtual patient dataset, we suggest a decision-making method that can exclude occlusal adjustment treatment from the treatment plan through the digital occlusal pressure analysis. A comparative analysis of whole-body scans before and after temporomandibular joint treatment was suggested for adolescent idiopathic scoliosis patients with temporomandibular joint disease. Occlusal plane and smile aesthetic analysis based on the virtual patient dataset was presented when treating patients with complete dentures.

Evaluation of the Accuracy of Distance Measurements on 3D Volume-rendered Image of Human Skull Using Multi-detector CT: Effects of Acquisition Section Thickness and Reconstruction Section Thickness

  • Haijo Jung;Kim, Hee-Joung;Lee, Sang-Ho;Kim, Dong-Wook;Soonil Hong;Kim, Dong-Hyeon;Son, Hye-Kyung;Wonsuk Kang;Kim, Kee-Deog
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.457-460
    • /
    • 2002
  • The image quality of three-dimensional (3D) images has been widely investigated by the qualitative analysis method. A need remains for an objective and quantitative method to assess the image quality of 3D volume-rendered images. The purpose of this study was to evaluate the quantitative accuracy of distance measurements on 3D volume-rendered images of a dry human skull by using multi-detector computed tomography (MDCT). A radiologist measured five times the twenty-one direct measurement line items composed among twelve reference points on the skull surface with a digital vernier caliper. The water filled skull specimen was scanned with a MDCT according to the section thicknesses of 1.25, 2.50, 3.75, and 5.00 mm for helical (high quality; pitch 3:1) scan mode. MDCT data were reconstructed with its acquisition section thickness and with 1.25 mm section thickness for all scans. An observer also measured seven times the corresponding items on 3D volume-rendered images with measuring tools provided by volumetric analysis software. The quantitative accuracy of distance measurements on the 3D volume-rendered images was statistically evaluated (p-value < 0.05) by comparatively analyzing these measurements with the direct distance measurements. The accuracy of distance measurements on the 3D volume-rendered MDCT images acquired with 1.25, 2.50, 3,75 and 5.00 mm section thickness and reconstructed with its section thickness were 48%, 33%, 23%, and 14%, respectively. Meanwhile, there were insignificant statistical differences in accuracy of distance measurements among 3D volume-rendered images reconstructed with 1.25 mm section thickness for the each acquisition section thickness. MDCT images acquired with thick section thickness and reconstructed with thin section thickness in helical scan mode should be effectively used in medical planning of 3D volume-rendered images. The quantitative analysis of distance measurement may be a useful tool for evaluating the quantitative accuracy and the defining optimal parameters of 3D volume-rendered CT images.

  • PDF

Comparative Analysis of Cervical Lateral Mass Screw Insertion among Three Techniques in the Korean Population by Quantitative Measurements with Reformatted 2D CT Scan Images : Clinical Research

  • Cho, Jae-Ik;Kim, Dae-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.3
    • /
    • pp.124-130
    • /
    • 2008
  • Objective : Our purpose of this study is to compare insertion angles and screw lengths from Roy-Camille, Magerl, and our designed method for cervical lateral mass screw fixation in the Korean population by quantitative measurement of reformatted two dimensional (2D) computed tomography (CT) images. Methods : We selected thirty Korean patients who were evaluated with thin section CT scans and reconstruction program to obtain reformatted 2D-CT images of the transversal plane passing the cranio-caudal angle using three different techniques. We measured the minimum angle to avoid vertebral artery (VA) injury, the ideal angle and depth for bicortical screwing of cervical lateral mass. Morphometric measurements of the lateral masses from C3-C7 were also taken. Results : In all three techniques, the mean safety angles from the VA were less than 8 degrees and the necessary depth of the screw was about 14 mm for safety to the VA and for the bicortical purchase. In our designed technique, the mean $\beta$ angles of each level from C3 to C7 were 29.0. 29.8. 29.5. 26.3. and 23.9 degrees, respectively. Conclusion : Results of this study and data from the literature indicate that differences may exist between the Korean and Western people in the length and angle for ideal lateral mass screw fixation. In addition, our technique needs further cadaveric and clinical study for safety and efficacy for being performed as alternative method for cervical lateral mass fixation.

Evaluation of Perfusion and Image Quality Changes by Reconstruction Methods in 13N-Ammonia Myocardial Perfusion PET/CT (13N-암모니아 심근관류 PET/CT 검사 시 영상 재구성 방법에 따른 관류량 변화와 영상 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.69-75
    • /
    • 2014
  • Purpose: The aim of this study was to evaluate changes of quantitative and semi-quantitative myocardial perfusion indices and image quality by image reconstruction methods in $^{13}N$-ammonia ($^{13}N-NH_3$) myocardial perfusion PET/CT. Materials and Methods: Data of 14 (8 men, 6 women) patients underwent rest and adenosine stress $^{13}N-NH_3$ PET/CT (Biograph TruePoint 40 with TrueV, Siemens) were collected. Listmode scans were acquired for 10 minutes by injecting 370MBq of $^{13}N-NH_3$. Dynamic and static reconstruction was performed by use of FBP, iterative2D (2D), iterative3D (3D) and iterative TrueX (TrueX) algorithm. Coronary flow reserve (CFR) of dynamic reconstruction data, extent(%) and total perfusion deficit (TPD) (%) measured in sum of 4-10 minutes scan were evaluated by comparing with 2D method which was recommended by vendor. The image quality of each reconstructed data was compared and evaluated by five nuclear medicine physicians through a blind test. Results: CFR were lower in TrueX 18.68% (P=0.0002), FBP 4.35% (P=0.1243) and higher in 3D 7.91% (P<0.0001). As semi-quantitative values, extent and TPD of stress were higher in 3D 3.07%p (P=0.001), 2.36%p (P=0.0002), FBP 1.93%p (P=0.4275), 1.57%p (P=0.4595), TrueX 5.43%p (P=0.0003), 3.93%p (P<0.0001). Extent and TPD of rest were lower in FBP 0.86%p (P=0.1953), 0.57%p (P=0.2053) and higher in 3D 3.21%p (P=0.0006), 2.57%p (P=0.0001) and TrueX 5.36%p (P<0.0001), 4.36%p (P<0.0001). Based on the results of the blind test for image resolution and noise from the snapshot, 3D obtained the highest score, followed by 2D, TrueX and FBP. Conclusion: We found that quantitative and semi-quantitative myocardial perfusion values could be under- or over-estimated according to the reconstruction algorithm in $^{13}N-NH_3$ PET/CT. Therefore, proper dynamic and static reconstruction method should be established to provide accurate myocardial perfusion value.

  • PDF