• Title/Summary/Keyword: 3D printing product design

Search Result 62, Processing Time 0.02 seconds

Analysis of Mechanical Characteristics of Polymer Sandwich Panels Containing Injection Molded and 3D Printed Pyramidal Kagome Cores

  • Yang, K.M.;Park, J.H.;Choi, T.G.;Hwang, J.S.;Yang, D.Y.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.275-279
    • /
    • 2016
  • Additive manufacturing or 3D printing is a new manufacturing process and its application is getting growth. However, the product qualities such as mechanical strength, dimensional accuracy, and surface quality are low compared with conventional manufacturing process such as molding and machining. In this study not only mechanical characteristics of polymer sandwich panel having three dimensional core layer but also mechanical characteristics of core layer itself were analyzed. The shape of three dimensional core layer was pyramidal kagome structure. This core layer was fabricated by two different methods, injection molding with PP resin and material jetting type 3D printing with acrylic photo curable resin. The material for face sheets in the polymer sandwich panel was PP. Maximum load, stiffness, and elongation at break were examined for core layers fabricated by two different methods and also assembled polymer sandwich panels. 3D printed core showed brittle behavior, but the brittleness decreased in polymer sandwich panel containing 3D printed core. The availability of 3D printed article for the three dimensional core layer of polymer sandwich panel was verified.

3D Printing Design for Minimizing Flection Phenomenon (3D 프린팅 휘어짐 현상 최소화를 위한 설계)

  • Choi, Seong-Ook;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1415-1420
    • /
    • 2014
  • 3D printer is based on an additive manufacturing technology, which helps in creating the three-dimensional object using a 3D drawing. It is used in various fields, because it prints out a variety of three-dimensional products in a short period of time. In this paper, we consider a technique using the FDM(Fused Deposition Modeling) method by dissolving the ABS(Acrylonitrile Butadiene Styrene) resin among a diversity of printing technique and materials. This kind of the 3D printer prints out a product in high temperature and cools down it. In this process, a flection phenomenon is occurred according to the size of the printing product and the surrounding environment. Conventional methods for mitigating this phenomenon maintain the temperature at the optimum level, but they require using additional devices. In order to minimize the flection phenomenon in 3D printing products without additional devices, in this paper, we propose a noble technique, which creates holes on suitable positions when they are designed by 3D drawing tools. Also, we suggest mathematical model for the proposed method, and measure and analyse a printing output using a proposed technique.

Case Analysis Study on 3D printed parametric Fashion Products (3D프린팅 파라메트릭 패션제품 사례분석연구)

  • Ahn, Jin-wook;Jang, Joong-sik
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.169-176
    • /
    • 2021
  • This study aims to explore the formativeness of 3D printed parametric fashion products while parametric design-based 3D printed fashion products are increasing. As a research method, theoretical review was conducted and formative properties of 3D printing parametric fashion products were derived, and cases of 3D printing parametric fashion products were collected and examined into three types of clothing, shoes, and accessories. As a result of the study, it was possible to confirm the shape with the motif of a natural object, and structurally, the economical optimal structure, assembly structure, and natural structure were confirmed. was found to use natural and achromatic colors. Through the understanding of the formativeness of 3D printing parametric fashion products presented in this study, it is expected that it will be used as basic data to understand the spread and formative flow of parametric-based fashion products.

Ceramic Direct Rapid Tooling with FDM 3D Printing Technology (FDM 3D Printing 기술을 응용한 직접식 세라믹 쾌속툴링)

  • Shin, Geun-Sik;Kweon, Hyun-Kyu;Kang, Yong-Goo;Oh, Won-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.83-89
    • /
    • 2019
  • In the conventional casting and forging method, there is a disadvantage that a mold is an essential addition, and a production cost is increased when a small quantity is produced. In order to overcome this disadvantage, a metal 3D printing production method capable of directly forming a shape without a mold frame is mainly used. In particular, overseas research has been conducted on various materials, one of which is a metal printer. Similarly, domestic companies are also concentrating on the metal printer market. However, In this case of the conventional metal 3D printing method, it is difficult to meet the needs of the industry because of the high cost of materials, equipment and maintenance for product strength and production. To compensate for these weaknesses, printers have been developed that can be manufactured using sand mold, but they are not accessible to the printer company and are expensive to machine. Therefore, it is necessary to supply three-dimensional casting printers capable of metal molding by producing molds instead of conventional metal 3D printing methods. In this study, we intend to reduce the unit price by replacing the printing method used in the sand casting printer with the FDM method. In addition, Ag paste is used to design the output conditions and enable ceramic printing.

Fabrication of 3D-Printed Circuit Device using Direct-Write Technology (Direct Write 기술을 이용한 3DCD의 제작)

  • Yun, Hae Young;Kim, Ho Chan;Lee, In Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2016
  • Generally, electrical circuits are fabricated as Printed Circuit Boards (PCBs) and mounted on the casing of the product. Additionally, this requires many other parts and some labor for assembly. Recently, molding technology has increasingly been applied to embed simple circuits in plastic casing. The technology is called a Molded Interconnected Device (MID). By using this technology, PCB fabrication can be replaced by molding, and much of the corresponding assembly process for PCBs can be eliminated if the circuit is simple enough for molding. Furthermore, as the improvement of conductive materials and printing technologies of simple electric circuits can be printed directly on the casing part, this also reduces the complexity of the product design and production cost. Therefore, this paper introduces a new MID fabrication process using direct 3D printing technology. Additionally, it is applied to an automotive part of a cruise control switch. The methodology and design are shown.

A study of 3D CAD and DLP 3D printing educational course (3D CAD와 DLP 3D 프린팅 교육과정에 관한 연구)

  • Young Hoon Kim;Jeongwon Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • Currently, almost all product development in the jewelry industry utilizes 3D CAD and 3D printing. In this situation, 3D CAD modeling and 3D printing ability units in colleges, Tomorrow Learning Card Education, and Course Evaluation-type jewelry design related education are conducted with developed curriculum based on the standards for training standards, training hours, training equipment, and practice materials presented by NCS. Accordingly, this study analyzes 3D CAD modeling and 3D printing training facilities, training hours, training equipment, etc into three categories of NCS precious metal processing and jewelry design, and studies the development of educational systems such as 3D CAD/3D printing curriculum and various environments that meet these standards. Education using this 3D CAD/3D printing education system will enable us to continuously supply professional talent with practical skills not only in the jewelry industry but also in the entire 3D CAD/3D printing manufacturing industry, which is called as one of the pillars of the 4th Industry. The quality of employment of trainees receiving education and the long-term retention rate after employed can also have a positive effect. In addition, excellent educational performance will help improve the recruitment rate of new students in jewelry jobs or manufacturing-related departments, which are difficult to recruit new students in recent years.

3D Animation Character Development Pipeline using 3D Printing (3차원 프린팅을 활용한 3차원 애니메이션 캐릭터 개발 파이프라인)

  • Kim, Kyoung-Ho;Lee, Jeongjin
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.52-59
    • /
    • 2013
  • Recently, the importance of the efficient production pipeline design has been increased for 3D animation, which becomes more delicate. In this paper, we propose 3D animation character development pipeline using 3D printing technology. We introduce 3D printing procedure into each step of the classical 3D animation and character development pipeline to incorporate the feed-back from the designer immediately. Specially, during the production step, we can find the design errors and minimize the period of production by using 3D printing of approximate shape of designed character. Using proposed method, eight DreaMegg characters were developed and their quality was very high with respect to 3D virtual graphics and real product. Using our method, high-quality 3D animation character can be developed with the minimized time and cost for development by reflecting the feed-back into production line from designers and researchers immediately.

The Effect of Manufacturing Method Preferences for Different Product Types on Purchase Intent and Product Quality Perception (제품유형에 따른 제조방식 선호가 구매의도와 품질지각에 미치는 효과)

  • Lee, Guk-Hee;Park, Seong-Yeon
    • Science of Emotion and Sensibility
    • /
    • v.19 no.4
    • /
    • pp.21-32
    • /
    • 2016
  • Studies have observed various phenomena regarding the effect of the interaction between type, price, and brand image of a product on consumers' purchase intent and product quality perception. Yet, few have studied the effect of the interaction between product type and manufacturing method on these factors. However, the advent of three-dimensional (3D) printers added a new manufacturing method, 3D printing, to the traditional methods of handicraft and automated machine-based production, and research is necessary since this new framework might affect consumers' purchase intent and product quality perception. Therefore, this study aimed to verify the effects of the interaction between product type and manufacturing method on purchase intent and product quality perception. To achieve this, in our experiment 1, we selected product types with different characteristics (drone vs. violin vs. cup), and measured whether consumers preferred different manufacturing methods for each product type. The results showed that consumers preferred the 3D printing method for technologically advanced products such as drones, the handmade method for violins, and the automated machine-based manufacturing method, which allows mass production, for cups. Experiment 2 attempted to verify the effects of the differences in manufacturing method preferences for each product type on consumers' purchase intent and product quality perception. Our findings are as follows: for drones, the purchase intent was highest when 3D printing was used; for violins, the purchase intent was highest when the violins were handmade; for cups, the purchase intent was highest when machine-based manufacturing was used. Moreover, whereas the product quality perception for drones did not differ across different manufacturing methods, consumers perceived that handmade violins had the highest quality and that cups manufactured with 3D printing had the lowest quality (the purchase intent for cups was also lowest when 3D printing was used). This study is anticipated to provide a wide range of implications in various areas, including consumer psychology, marketing, and advertising.

Node Part Development of Vehicle Body with Space Frame Using Design Technology for Additive Manufacturing (적층가공 특화설계기법을 이용한 스페이스 프레임 차체 노드 부품 개발)

  • Yang, Min-Seok;Jang, Jin-Seok;Kim, Da-Hye;Sung, Ji-Hyun;Kim, Jeung-Tae;Cho, Yeong-Chul;Lee, Jae-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.45-52
    • /
    • 2020
  • Recently, design for additive manufacturing (DfAM) technology has become a prominent design methodology for exploiting 3D printing, which leads the Fourth Industrial Revolution. When manufactured by the 3D printing method, it is possible to produce several shapes compared to the conventional casting or cutting process. DfAM-as a newly-proposed design methodology-can be used to specially design products with various shapes to apply functional requirements. Topology optimization verifies load paths to determine the draft design, and a shape-optimized design with objective functions for weight reduction enables efficient lightweight product design. In this study, by using these two DfAM technologies, a lightweight and optimal design is constructed for a node part of a vehicle body with a space frame designed for a lightweight vehicle. DfAM methodologies for concept design and detailed design, and the associated results, are presented. Finally, the product was additively manufactured, a fatigue performance test was performed, and the design reliability was verified.

Do-It-Yourself (DIY) manufacture of a Nano-LC MALDI spotter robot using 3D printing technology

  • Lee, Jae-ung;Oh, Han Bin
    • Analytical Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.167-173
    • /
    • 2017
  • In the era of the forth Industrial Revolution, open source code and open source hardware have gained much attention. In particular, 3D printing technology is expanding into the realms of classical science, technology and our daily lives. Relatedly, in the present study, we demonstrate the manufacture of a nano-LC MALDI spotter robot using 3D printing technology. The parts of the spotter robot were either made using a 3D printer or purchased as 3D printer parts from the 3D printer online market, so that anyone can make the robot without a deep knowledge of engineering or electronics, i.e., DIY (do-it-yourself) product. In the nano-LC MALDI spotter, the nano-LC eluent and MALDI matrix were mixed in a T-union and discharged from the capillary outlet. The eluent and matrix mixture could be spotted onto the movable MALDI plate. The MALDI plate was designed to translate in a two-dimensional space (xy plane), which was enabled by the movements of two stepper motors. In the paper, all computer-aided design (CAD) files for the parts and operation software are provided to help the reader manufacture their own spotter robot.