• Title/Summary/Keyword: 3D printing fashion

Search Result 80, Processing Time 0.027 seconds

The effect of experiential marketing factors of fashion service applying 4th industrial revolution technology on customer acceptance and use : focusing on 3D printing, internet of things, and innovation (4차 산업 기술 패션 서비스 체험마케팅 요인이 소비자 수용과 이용에 미치는 영향 : 3D프린팅, 사물인터넷, 혁신성을 중심으로)

  • Jeong, So-Jeong;Rhee, Young-Ju
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.3
    • /
    • pp.93-108
    • /
    • 2019
  • This study analyzed the influence of experiential marketing factors of 3D printing and Internet services on technology acceptance factors and usage intention. Furthermore, we analyzed how the user's innovativeness shows the effect on the intention to use. Data acquired from a total of 518 college students was used for the final analysis, which was perfromed by SPSS 21.0 and AMOS 23.0 programs. The results of this study are as follows. We analyzed the influence of the experiential marketing factors of fashion service utilizing the 3D printing and the Internet of Things on the acceptance of technology and intention to use these technologies. As for 3D printing, first, sensory and behavioral factors are positively related to the acceptance of technology. Second, emotional and cognitive factors have negative effects on all technology acceptance. Third, relational factors did not show a significant influence on several conditions of technology acceptance. Fourth, the effects of technology acceptance on the willingness to use have a positive effect on several conditions factors, except the effort expectation. As for the result concerning the Internet of Things first, behavioral factors have a positive effect on all technology acceptance. Second, emotional factors have a negative effect on all technology acceptance. Third, cognitive factors did not have a significant effect on various conditions and showed negative effects on several factors. Fourth, sensory and relational factors did not affect the acceptance of technology. Fifth, the effects of technology acceptance on the intention to use are affected by several conditions, except for effort expectation. As a result of analyzing the moderating effects of user's innovativeness on the willingness to use, 3D printing did not show any significant effect on innovation. However, the Internet of Things has a significant influence on the user acceptance of technology acceptance.

Formative Characteristics of Women's Shoes Design Utilizing 3D Printing Technology (3D 프린팅 기술이 접목된 여성 슈즈 디자인의 조형적 특성)

  • Kim, Young-Sam;Jun, Yuh-Sun;Park, keun-Jung;Kim, Jang-Hyeon
    • Journal of the Korean Society of Costume
    • /
    • v.66 no.8
    • /
    • pp.14-32
    • /
    • 2016
  • This study examines the morphological expression type and formative characteristics of women's shoes designs that integrate 3D printing technology. The results of the study are as follows. First, the morphological expression types of contemporary shoes that integrate 3D printing technology express a structural form created by repetition. Second, it expresses a dynamic form, which combines organic curves that create an external volume. Third, it expresses a surrealistic form centered on an object with the creation of a unique shape that utilizes objects easily experienced in local surroundings. Fourth, it expresses a hybrid form on a partial derivation. Each of the other system's components are fused to create another beauty that develops a new value in a colorful variation on the shape of 3D printing shoes. The first formative characteristic of women's shoes designs that integrate 3D printing technology is continuity. This creates an invisible form of a new space through repetitive unidirectional layers with a gradual expansion of a unitary seamless curves. Second, it is an exaggeration. This exaggeration elicits an enormous aesthetic quality by structuring the outward space in the difference of the volume formed based on the maximization of a specific part and the volume of a line's atypical movement. Third, it is a decoration. It displays the beauty of a decoration that evokes a unique artistic inspiration by partial unification or a practical representation of a specific form. This can also be seen as superimposing a 3D printing figure that has an outstanding shape onto part of the fashion shoes. Fourth, it concerns a geometrical characteristic that formulates a new structure with rationality in combining basic shapes such as circles, triangles and squares with lines, hexagons and interconnected geometrical forms to create a multi-dimensional space for shoes in a systematic and unidirectional pattern.

The Analysis on the Torso Type Dress Form Developed Through the 3-D Virtual Body Modeling of the Korean Female Fashion Models (국내 여성 패션모델의 3차원 가상인체 모델링을 통한 토르소형 인대 개발과 그 특성 분석)

  • Park, Gin Ah
    • Journal of the Korean Society of Costume
    • /
    • v.65 no.2
    • /
    • pp.157-175
    • /
    • 2015
  • The study was aimed to develop a torso-type dress form representing body features of the female fashion models in Korea. To fulfill this purpose, 5 female fashion models aged between 20 and 26 having the average body measurements of professional fashion models in Korea were selected and their 3-D whole body scanned data were analysed. The 3-D whole body scanning method enabled to generate a virtual female fashion model within the CAD system by measuring the subjects' body shapes and sizes. In addition, the virtual model's body data led the development of a standard female fashion model dress form for the efficient fashion show preparation. In order to manufacture the real dress form for female fashion models, 3-D printing technology was adopted. The consequent results are as follows: (1) the body measurements (unit: cm) of the developed dress form were: biacromion length, 36.0, bust point to bust point, 16.6, front/back interscye lengths, 32.0/33.0, neck point to breast point, 26.0, neck point to breast point to waist line, 41.5, waist front/back lengths, 34.5/38.5, waist to hip length, 24.0, bust circumference, 85.0, underbust circumference, 75.0, waist circumference, 65.0, hip circumference, 92.0. (2) the body measurements differences between the developed and existing dress forms were highlighted with the body measurements of neck point to breast point and waist to hip length. (3) the body shape features of the developed dress form showed that bust, shoulder blade, shoulder slope, abdomen and back waist line to hip line parts were more realistically manufactured.

Compressive Properties of 3D Printed TPU Samples with Various Infill Conditions (채우기 조건에 따른 3D 프린팅 TPU 샘플의 압축 특성)

  • Jung, Imjoo;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.3
    • /
    • pp.481-493
    • /
    • 2022
  • This study investigated process conditions for 3D printing through manufacturing thermoplastic polyurethane (TPU) samples under different infill conditions. Samples were prepared using a fused deposition modeling 3D printer and TPU filament. 12 infill patterns were set (2D: grid, lines, zigzag; 3D: triangles, cubic, cubic subdivision, octet, quarter cubic; 3DF: concentric, cross 3D, cross, honeycomb), with 3 infill densities (20%, 50%, 80%). Morphology, actual time/weight and compressive properties were analyzed. In morphology: it was found that, as infill density increased, the increase rate of the number of units rose for 2D and fell for 3DF. Printing time varied with the number of nozzle movements. In the 3DF case, the number of nozzle movements increased rapidly with infill density. Sample weight increased similarly. However, where the increase rate of the number of units was low, sample weight was also low. In compressive properties: compressive stress increased with infill density and stress was high for the patterns with layers of the same shape.

Characterization of 3D Printed Wrist Brace with Various Tilting Angles of Re-entrant Pattern Using Thermoplastic Elastomer

  • Ye-Eun Park;Hyejin Lee;Imjoo Jung;Sunhee Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.6
    • /
    • pp.1074-1087
    • /
    • 2022
  • This study reports an optimization of a 3D printed wrist brace (WB) for various tilting angles (0°, 45°, 90°) of the re-entrant (RE) pattern and thickness (2 mm, 4 mm) using thermoplastic polyurethane (TPU) filaments and thermoplastic elastomer (TPE) filaments. The actual printing time, weight, Poisson's ratio, and tensile property of the manufactured samples were analyzed. The results confirmed that the actual printing time and weight increased with increasing thickness, regardless of the filament type. All tilting angles of the WB showed a negative Poisson's ratio (NPR), the largest of which appeared at 90°. The results of the tensile property analysis showed that a 90° tilting angle also had the largest value of elongation and stress. From these results, we conclude that the most suitable wrist brace is one in which the actual printing time is low, the weight is minimized to a thickness of 2 mm, and the tilting angle of the RE pattern is 90° for good shock absorption. The choice of filaments may be decided upon according to the user's preference, since the TPU is stiff and the TPE is elastic.

Development of Ergonomic Leg Guard for Baseball Catchers through 3D Modeling and Printing

  • Lee, Hyojeong;Eom, Ran-i;Lee, Yejin
    • Journal of Fashion Business
    • /
    • v.20 no.3
    • /
    • pp.17-29
    • /
    • 2016
  • To develop baseball catcher leg guards, 3-dimensional (3D) methodologies, which are 3D human body data, reverse engineering, modeling, and printing, optimized guard design for representative positions. Optimization was based on analysis of 3D body surface data and subjective evaluation using 3D printing products. Reverse engineering was used for analysis and modeling based on data in three postures: standing, $90^{\circ}$ knee flexion, and $120^{\circ}$ knee flexion. During knee flexion, vertical skin length increased, with the thigh and knee larger in anterior area compared to the horizontal dimension. Moreover, $120^{\circ}$ knee flexion posture had a high radius of curvature in knee movement. Therefore, guard designs were based on increasing rates of skin deformation and numerical values of radius of curvature. Guards were designed with 3-part zoning at the thigh, knee, and shin. Guards 1 and 2 had thigh and knee boundaries allowing vertical skin length deformation because the shape of thigh and knee significantly affects to its performance. Guard 2 was designed with a narrower thigh and wider knee area than guard 1. The guards were manufactured as full-scale products on a 3D printer. Both guards fit better in sitting than standing position, and guard 2 received better evaluations than guard 1. Additional modifications were made and an optimized version (guard 3) was tested. Guard 3 showed the best fit. A design approach based on 3D data effectively determines best fitting leg guards, and 3D printing technology can customize guard design through immediate feedback from a customer.

Development of a Custom-Made Dress Form for Draping Based on 3D Handheld Scanners and 3D Printing Technology (3D 핸디형 스캐너와 3D 프린팅 기술 기반 드레이핑용 커스텀 메이드 드레스폼 개발)

  • Ryu, Eun Joo;Song, Hwa Kyung
    • Fashion & Textile Research Journal
    • /
    • v.24 no.4
    • /
    • pp.451-459
    • /
    • 2022
  • This study aimed to develop a a custom-made dress form for draping using a live model's 3D body scan obtained from an entry-level 3D handheld scanners, 3D modeling software and 3D printing technology. A female subject was recruited whose body size fell under the normal (N) body shape criteria suggested by KS K 0051. First, the handheld scanner reduced the length of the legs in scanning, but most of the scanning operations between the neck and crotch levels were conducted accurately. Therefore, this study was designed to develop a torso dress form. The full body 3D scan was edited into a torso shape using ZBrush® software. Using Rhinoceros® and Materialise's Magics software, a 3D body scan was modeled so that the user could fit two types of mannequin stands (one with a neck fixation from above and one with an insert from below) to the dress form. The body scan was divided into 9 pieces to fit the printable size of the Stratasys 3D printer Fortus 250mc, and the cross-sectional distance from the center to the periphery was downsized by 2 mm. After outputting the dress form scan file with a 3D printer, the dress form was manufactured by the first covering it with a 4 oz nonwoven pad and the second covering with a single jersey material.

4D Printing Materials for Soft Robots (소프트 로봇용 4D 프린팅 소재)

  • Sunhee Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.667-685
    • /
    • 2022
  • This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.

Fixing Behaviors of Dimethylamino Anthraquinone Disperse Dyes and Monochlorotriazinyl Azo Reactive Dyes on P/C Blended Fabrics in One-Step Printing (디메틸아미노안트라퀴논계 분산염료와 아조계 모노클로로트리아진형 반응염료에 의한 P/C혼방직물의 일단계 날염에 있어 고착거동)

  • Park, Geon-Yong;Seo, Gi-Sung
    • Textile Coloration and Finishing
    • /
    • v.19 no.3
    • /
    • pp.18-25
    • /
    • 2007
  • The fixing behaviors of anthraquinone disperse dyes containing dimethylamino substituent, such as C. I. Disperse Violet 26(D.V.26) and C. I. Disperse Blue 14(D.V.14), or containing diamino substituent, such as C. I. Disperse Blue 73(D.B.73), and monochlorotriazinyl azo reactive dyes, such as C. I. Reactive Orange 13(R.O.13), C. I. Reactive Red 3(R.R.3). C. I. Reactive Yellow 2(R.Y.2) on polyester/cotton blend(P/C) fabrics were examined for the one-step printing of P/C fabrics. The high temperature steaming of $175^{\circ}C$ is the most satisfactory fixing method for P/C one-step printing with above disperse and reactive dyes among the four different fixing methods: $175^{\circ}C$ steaming, $102^{\circ}C$ steaming${\rightarrow}175^{\circ}C$ steaming, $190^{\circ}C$ thermosol, $102^{\circ}C$ steaming${\rightarrow}190^{\circ}C$ thermosol. $190^{\circ}C$ thermosol is unfit to fix R.R.3 and R.Y.2 whose heat stability is poor. It was found that D.V.26 and D.B.14 containing dimethylamino substituent are unstable for heat and alkali, but D.B.73 is stable for them to print P/C blend fabrics with R.O.13 which is also stable for heat. Therefore we found that D.B.73, R.O.13 and a pair of D.B.73 and R.O.13 were very suitable for one-step printing of P/C blend fabrics.

Development of Wearable Fashion Prototypes Using Entry-Level 3D Printers (보급형 3D 프린터를 활용한 착용형 패션 프로토타입 개발)

  • Chun, Jaehoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.3
    • /
    • pp.468-486
    • /
    • 2017
  • In this study, three kinds of wearable fashion prototypes were developed using 3D printers with the goal of developing a practical production method for daily clothes. Prototypes were modeled using Rhinoceros software and developed using FDM 3D printers and TPU filaments. The results of this study are as follows. First, it confirmed the possibility of FDM-type entry-level 3D printers as a tool to develop wearable fashion products. Second, TPU filaments that are soft and ductile are highly likely to be used as a clothing material. Third, patterns designed through the 3D modeling process can be sampled directly to a 3D printer and easily corrected and supplemented. Fourth, it was confirmed that TPU prints of about 1.00mm thickness can be sewn with fabric using sewing machines through the development of 'Prototype 1' and 'Prototype 2'; in addition, hand stitching is also possible. Fifth, as in the case of 'Prototype 3', it is possible to fabricate a garment fit enough to the body if the clothing configuration is designed to connect the basic module using TPU filaments. In the future, the development of wearable fashion prototypes using various materials and 3D printing technology will help diversify everyday clothes.