• 제목/요약/키워드: 3D printing Laminated Angle

검색결과 4건 처리시간 0.02초

FDM 3D프린팅 어닐링 조건에 따른 내부응력 완화에 관한 연구 (Investigation of the Internal Stress Relaxation in FDM 3D Printing : Annealing Conditions)

  • 이선곤;김용래;김수현;김주형
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.130-136
    • /
    • 2018
  • In this paper, the effects of different 3D printing parameters including laminated angle and annealing temperature, were observed for their effects on tensile testing. In 3D printing, a filament is heated quickly, extruded, and then cooled rapidly. Because plastic is a poor heat conductor, it heats and cools unevenly causing the rapid heating and cooling to create internal stress within the printed part. Therefore, internal stress can be removed using annealing and to increase tensile strength and strain. During air cooling at annealing temperature $140^{\circ}C$, the strain of laminated angle $45^{\circ}$ specimens tended to increase by 46% while the tensile stress tended to increase by 7.4%. During oven cooling at annealing temperature $140^{\circ}C$, the strain of laminated angle $45^{\circ}$ specimens tended to increase by 34% while the tensile stress tended to increase by 22.2%. In this study, we found "3D printing with annealing" eliminates internal stress and increases the strength and stiffness of a printed piece. On the microstructural level, annealing reforms the crystalline structures to even out the areas of high and low stress, which created fewer weak areas. These results are very useful for making 3D printed products with a mechanical strength that is suitable for applications.

FDM 3D프린팅 윤활유에 따른 내부응력 완화에 관한 연구 (Investigation of the Internal Stress Relaxation in FDM 3D Printing : vegetable lubricating oil)

  • 이선곤;김용래;김수현;강선호;김주형
    • 한국기계가공학회지
    • /
    • 제18권2호
    • /
    • pp.82-90
    • /
    • 2019
  • In this paper, the effects of different 3D printing conditions including oil lubrication and annealing are observed for their effects on tensile testing. In 3D printing, a press-out extrude filament is rapidly heated and cooled to create internal stress in the printed part. The 3D printing internal stress can be removed using oil-coated filament and annealing. During the oven cooling at an annealing temperature of $106^{\circ}C$, the stress of the specimens with laminated angle $0^{\circ}$ tends to increase by 12.6%, and that of the oil-coated filament printing specimens is increased by 17%. At the annealing temperature of $106^{\circ}C$, the stress of the oil-coated filament printing specimens tends to increase by 35%. In this study, we have found that the oil lubrication and annealing remove the internal stresses and increase the strength of the printed specimens. The oil lubrication and annealing reform the crystalline structures to even out the areas of high and low stress, which creates fewer fragile areas. These results are very useful for the manufacture of 3D printing products with a suitable mechanical strength for applications.

FDM 3D 전도성 프린팅 어닐링 조건 따른 전기적 특성 연구 (Study on Electrical Characteristics of FDM Conductive 3D Printing According to Annealing Conditions)

  • 이선곤;김용래;유태정;박지혜;김주형
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.53-60
    • /
    • 2018
  • In this paper, the effect of different 3D printing parameters including laminated angle and annealing temperature is observed their effect on FDM conductive 3D printing. In FDM 3D printing, a conductive filament is heated quickly, extruded, and then cooled rapidly. FDM 3D Print conductive filament is a poor heat conductor, it heats and cools unevenly causing the rapid heating and cooling to create internal stress. when the printed conductive specimens this internal stress can be increase electrical resistance and decrease electrical conductivity. Therefore, This experiment would like to use annealing to remove internal stress and increase electrical conductivity. The result of experiment when 3D printing conductive specimen be oven cooling of annealing temperature $120^{\circ}C$ electrical resistance appeared decrease than before annealing. So We have found that 3D printing annealing removes internal stresses and increases the electrical conductivity of printed specimens. These results are very useful for making conductive 3D printing electronic circuit, sensor ect...with electrical conductance suitable for the application.

등방 파괴 강도를 갖는 캡슐 설계 및 제작 (Design and fabrication of capsules with isotropic destruction intensity)

  • 임태욱;성호;호걸;왕수러;정원석
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.247-248
    • /
    • 2022
  • 3D printer-based self-healing capsules have been proposed to heal cracks by enabling various structural designs, repeatable fabrication, and strength analysis of the capsules. The Fusion Deposition Modeling (FDM) method was used to design, analyze, and produce new self-healing capsules that are widely used at low cost. However, PLA extruded from FDM has low interlayer adhesion energy, and thus strength varies depending on the angle of load applied to the laminated layer and the concrete structure, thereby degrading the performance of the self-healing capsule. Therefore, in this paper, the structure of the capsule manufactured by the FDM PLA method has isotropic strength was designed. In addition, the fracture strength in the x, y, and z directions of the load applied through the compression test was analyzed. As a result, it was confirmed that the newly proposed capsule design has an isotropic fracture strength of 1400% in all directions compared to the existing spherical thin-film capsule.

  • PDF