• Title/Summary/Keyword: 3D position coordinate

Search Result 124, Processing Time 0.025 seconds

3-D Positioning Using Stereo Vision and Guide-Mark Pattern For A Quadruped Walking Robot (스테레오 시각 정보를 이용한 4각보행 로보트의 3차원 위치 및 자세 검출)

  • ;;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.8
    • /
    • pp.1188-1200
    • /
    • 1990
  • In this paper, the 3-D positioning problem for a quadruped walking robot is investigated. In order to determine the robot's exterior position and orentation in a worls coordinate system, a stereo 3-D positioning algorithm is proposed. The proposed algorithm uses a Guide-Mark Pattern (GMP) specialy designed for fast and reliable extraction of 3-D robot position information from the uncontrolled working environment. Some experimental results along with error analysis and several means of reducing the effects of vision processing error in the proposed algorithm are disscussed.

  • PDF

Height and Position Estimation of Moving Objects using a Single Camera

  • Lee, Seok-Han;Lee, Jae-Young;Kim, Bu-Gyeom;Choi, Jong-Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.158-163
    • /
    • 2009
  • In recent years, there has been increased interest in characterizing and extracting 3D information from 2D images for human tracking and identification. In this paper, we propose a single view-based framework for robust estimation of height and position. In the proposed method, 2D features of target object is back-projected into the 3D scene space where its coordinate system is given by a rectangular marker. Then the position and the height are estimated in the 3D space. In addition, geometric error caused by inaccurate projective mapping is corrected by using geometric constraints provided by the marker. The accuracy and the robustness of our technique are verified on the experimental results of several real video sequences from outdoor environments.

  • PDF

A Study of Development for Contact CMM Probe using Three-Component Force Sensor (3 분력 힘 센서를 이용한 CMM 용 접촉식 프로브의 개발에 관한 연구)

  • 송광석;권기환;박재준;조남규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.101-107
    • /
    • 2003
  • A new mechanical probe for 3-D feature measurement on coordinate measuring machines (CMMs) is presented. The probe is composed of the contact stylus and the three-component force sensor. With the stylus mounted on the force sensor, the probe can not only measure 3-D features, but also detect contact force acting on the stylus tip. Furthermore, the probing direction and the actual contact position can be determined by the relationship among three components of contact force to be detected. In this paper, transformation matrix representing the relationship between the external force acting on the stylus tip and the output voltages of measurement gauges is derived and calibrated. The prototype of probe is developed and its availability is investigated through the experimental setup for calibration test of the probe. A series of experimental results show that the proposed probe can be an effective means of improving the accuracy of touch probing on CMM.

Closed-form based 3D Localization for Multiple Signal Sources (다중 신호원에 대한 닫힌 형태 기반 3차원 위치 추정)

  • Ko, Yo-han;Bu, Sung-chun;Lee, Chul-soo;Lim, Jae-wook;Chae, Ju-hui
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.78-84
    • /
    • 2022
  • In this paper, we propose a closed-form based 3D localization method in the presence of multiple signal sources. General localization methods such as TDOA, AOA, and FDOA can estimate a location when a single signal source exists. When there are multiple unknown signal sources, there is a limit in estimating the location. The proposed method calculates a cross-correlation vector of signals received by sensors having an array antenna, and estimates TDOA and AOA values from the cross-correlation values. Then, the coordinate transformation is performed using the position of the reference sensor. Then, the coordinate rotation is performed using the estimated AOA value for the transformed coordinates, and then the three-dimensional position of each emitter is estimated. The proposed method verifies its performance through computer simulation.

Dimensional Analysis for the Front Chassis Module in the Auto Industry (자동차 프런트 샤시 모듈의 좌표 해석)

  • 이동목;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.50-56
    • /
    • 2004
  • The directional ability of an automobile has an influence on driver directly, and hence it must be given most priority. Alignment factors of automobile such as the camber, caster and toe directly affect the directional ability of a vehicle. The above mentioned factors are determined by the pose of interlinks in the assembly of an automobile front chassis module. Measuring the position of center point of ball joints in the front lower arm is very difficult. A method to determine this position is suggested in this paper. Pose estimation for front chassis module and dimensional evaluation to find the rotational characteristics of front lower arm were developed based on fundamental geometric techniques. To interpret the inspection data obtained for front chassis module, 3-D best fit method is needed. The best fit method determines the relationship between the nominal design coordinate system and the corresponding feature coordinate system. The least squares method based on singular value decomposition is used in this paper.

Guidance of Mobile Robot for Inspection of Pipe (파이프 내부검사를 위한 이동로봇의 유도방법)

  • 정규원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.480-485
    • /
    • 2002
  • The purpose of this paper is the development of guidance algorithm for a mobile robot which is used to acquire the position and state information of the pipe defects such as crack, damage and through hole. The data used for the algorithm is the range data obtained by the range sensor which is based on an optical triangulation method. The sensor, which consists of a laser slit beam and a CCD camera, measures the 3D profile of the pipe's inner surface. After setting the range sensor on the robot, the robot is put into a pipe. While the camera and the LSB sensor part is rotated about the robot axis, a laser slit beam (LSB) is projected onto the inner surface of the pipe and a CCD camera captures the image. From the images the range data is obtained with respect to the sensor coordinate through a series of image processing and applying the sensor matrix. After the data is transformed into the robot coordinate, the position and orientation of the robot should be obtained in order to guide the robot. In addition, analyzing the data, 3D shape of the pipe is constructed and the numerical data for the defects of the pipe can be found. These data will be used for pipe maintenance and service.

  • PDF

Automatic Side Mirror and Room Mirror Adjustment System using 3D Location of Driver′s Eyes (운전자 눈 위치를 이용한 사이드미러와 룸미러 자동조절시스템)

  • 노광현;박기현;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.7-7
    • /
    • 2000
  • This paper describes a mirror control system that can adjust the location of side and room mirror of the vehicle automatically using 3D coordinates to monitor the location of driver's eyes. Through analysis of the image inputted by two B/W CCD camera and infrared lamps installed on top of the driver's dashboard, we can estimate the values of 3D coordinate of the driver's eyes. Using these values, this system can determine the absolute position of each mirror and activate each actuator to the appropriate position. The stereo vision system can detect the driver's eyes whether it is day or night by virtue of infrared Lamps. We have tested this system using 10 drivers who drive a car currently, and most of the drivers were satisfied with the convenience of this system.

  • PDF

A Numerical Simulation of Flows in an Engine Cooling Passage (엔진 냉각유로 내의 유동에 관한 수치해석)

  • 허남건;윤성영;조원국;김광호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.32-40
    • /
    • 1993
  • Flow fields in model engine cooling passages are studied numerically by using TURBO-3D program, a finite volume based 3-D turbulent flow program adopting a general body fitted coordinate system. The effects of exit position on mass flow rate at each gasket hole are examined for a model cooling passage in order to understand the flow distribution inside the water jacket. The results of the present study can be applied to the design of high performance, high reliability engine.

  • PDF

New Method of Visual Servoing using an Uncalibrated Camera and a Calibrated Robot

  • Morita, Masahiko;Shigeru, Uchikado;Yasuhiro, Osa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41.4-41
    • /
    • 2002
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. Here we consider two coordinate systems, the world coordinate system and the camera coordinate one and we use a pinhole camera model as the camera one. First of all, the essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. And these plays an important role in designing visual servoing in the later chapters. Statement of the problem is giver. Provided two a priori...

  • PDF

Quasi-3D analysis of Axial Flux Permanent Magnet Rotating Machines using Space Harmonic Methods (공간고조파법을 이용한 축 자속 영구자석 회전기기의 준(準)-3D 특성 해석)

  • Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.942-948
    • /
    • 2011
  • This paper deals with characteristic analysis of axial flux permanent magnet (AFPM) machines with axially magnetized PM rotor using quasi-3-D analysis modeling. On the basis of magnetic vector potential and a two-dimensional (2-D) polar-coordinate system, the magnetic field solutions due to various PM rotors are obtained. In particular, 3-D problem, that is, the reduction of magnetic fields near outer and inner radius of the PM is solved by introducing a special function for radial position. And then, the analytical solutions for back-emf and torque are also derived from magnetic field solutions. The predictions are shown in good agreement with those obtained from 3-D finite element analyses (FEA). Finally, it can be judged that analytical solutions for electromagnetic quantities presented in this paper are very useful for the AFPM machines in terms of following items : initial design, sensitivity analysis with design parameters, and estimation of control parameters.