• Title/Summary/Keyword: 3D point clouds

Search Result 117, Processing Time 0.024 seconds

Effective Ray-tracing based Rendering Methods for Point Cloud Data in Mobile Environments (모바일 환경에서 점 구름 데이터에 대한 효과적인 광선 추적 기반 렌더링 기법)

  • Woong Seo;Youngwook Kim;Kiseo Park;Yerin Kim;Insung Ihm
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.93-103
    • /
    • 2023
  • The problem of reconstructing three-dimensional models of people and objects from color and depth images captured by low-cost RGB-D cameras has long been an active research area in computer graphics. Color and depth images captured by low-cost RGB-D cameras are represented as point clouds in three-dimensional space, which correspond to discrete values in a continuous three-dimensional space and require additional surface reconstruction compared to rendering using polygonal models. In this paper, we propose an effective ray-tracing based technique for visualizing point clouds rather than polygonal models. In particular, our method shows the possibility of an effective rendering method even in mobile environment which has limited performance due to processor heat and lack of battery.

Automatic Generation of Clustered Solid Building Models Based on Point Cloud (포인트 클라우드 데이터 기반 군집형 솔리드 건물 모델 자동 생성 기법)

  • Kim, Han-gyeol;Hwang, YunHyuk;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1349-1365
    • /
    • 2020
  • In recent years, in the fields of smart cities and digital twins, research on model generation is increasing due to the advantage of acquiring actual 3D coordinates by using point clouds. In addition, there is an increasing demand for a solid model that can easily modify the shape and texture of the building. In this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. Accordingly, in this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. In the first step, the ground points were removed through the planarity analysis of the point cloud. In the second step, building area was extracted from the ground removed point cloud. In the third step, detailed structural area of the buildings was extracted. In the fourth step, the shape of 3D building models with 3D coordinate information added to the extracted area was created. In the last step, a 3D building solid model was created by giving texture to the building model shape. In order to verify the proposed method, we experimented using point clouds extracted from unmanned aerial vehicle images using commercial software. As a result, 3D building shapes with a position error of about 1m compared to the point cloud was created for all buildings with a certain height or higher. In addition, it was confirmed that 3D models on which texturing was performed having a resolution of less than twice the resolution of the original image was generated.

Ceiling-Based Localization of Indoor Robots Using Ceiling-Looking 2D-LiDAR Rotation Module (천장지향 2D-LiDAR 회전 모듈을 이용한 실내 주행 로봇의 천장 기반 위치 추정)

  • An, Jae Won;Ko, Yun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.7
    • /
    • pp.780-789
    • /
    • 2019
  • In this paper, we propose a new indoor localization method for indoor mobile robots using LiDAR. The indoor mobile robots operating in limited areas usually require high-precision localization to provide high level services. The performance of the widely used localization methods based on radio waves or computer vision are highly dependent on their usage environment. Therefore, the reproducibility of the localization is insufficient to provide high level services. To overcome this problem, we propose a new localization method based on the comparison between ceiling shape information obtained from LiDAR measurement and the blueprint. Specifically, the method includes a reliable segmentation method to classify point clouds into connected planes, an effective comparison method to estimate position by matching 3D point clouds and 2D blueprint information. Since the ceiling shape information is rarely changed, the proposed localization method is robust to its usage environment. Simulation results prove that the position error of the proposed localization method is less than 10 cm.

Automatic Object Recognition in 3D Measuring Data (3차원 측정점으로부터의 객체 자동인식)

  • Ahn, Sung-Joon
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.47-54
    • /
    • 2009
  • Automatic object recognition in 3D measuring data is of great interest in many application fields e.g. computer vision, reverse engineering and digital factory. In this paper we present a software tool for a fully automatic object detection and parameter estimation in unordered and noisy point clouds with a large number of data points. The software consists of three interactive modules each for model selection, point segmentation and model fitting, in which the orthogonal distance fitting (ODF) plays an important role. The ODF algorithms estimate model parameters by minimizing the square sum of the shortest distances between model feature and measurement points. The local quadric surface fitted through ODF to a randomly touched small initial patch of the point cloud provides the necessary initial information for the overall procedures of model selection, point segmentation and model fitting. The performance of the presented software tool will be demonstrated by applying to point clouds.

3D Point Clouds Encryption Method and Analysis of Encryption Ratio in Holographic Reconstruction Image (3D 공간정보 암호화 기법과 홀로그래픽 복원영상의 암호화 효율 분석)

  • Choi, Hyun-Jun;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1703-1710
    • /
    • 2017
  • This paper propose a 3D point clouds (depth) security technique for digital holographic display service. Image contents encryption is a method to provide only authorized right owners with the original image information by encrypting the entire image or a part of the image. The proposed method detected an edge from a depth and performed quad tree decomposition, and then performed encryption. And encrypts the most significant block among the divided blocks. The encryption effect was evaluated numerically and visually. The experimental results showed that encrypting only 0.43% of the entire data was enough to hide the constants of the original depth. By analyzing the encryption amount and the visual characteristics, we verified a relationship between the threshold for detecting an edge-map. As the threshold for detecting an edge increased, the encryption ratio decreased with respect to the encryption amount.

Recognition and Modeling of 3D Environment based on Local Invariant Features (지역적 불변특징 기반의 3차원 환경인식 및 모델링)

  • Jang, Dae-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.31-39
    • /
    • 2006
  • This paper presents a novel approach to real-time recognition of 3D environment and objects for various applications such as intelligent robots, intelligent vehicles, intelligent buildings,..etc. First, we establish the three fundamental principles that humans use for recognizing and interacting with the environment. These principles have led to the development of an integrated approach to real-time 3D recognition and modeling, as follows: 1) It starts with a rapid but approximate characterization of the geometric configuration of workspace by identifying global plane features. 2) It quickly recognizes known objects in environment and replaces them by their models in database based on 3D registration. 3) It models the geometric details the geometric details on the fly adaptively to the need of the given task based on a multi-resolution octree representation. SIFT features with their 3D position data, referred to here as stereo-sis SIFT, are used extensively, together with point clouds, for fast extraction of global plane features, for fast recognition of objects, for fast registration of scenes, as well as for overcoming incomplete and noisy nature of point clouds.

  • PDF

Recognition of 3D Environment for Intelligent Robots (지능로봇을 위한 3차원 환경인식)

  • Jang, Dae-Sik
    • Journal of Internet Computing and Services
    • /
    • v.7 no.5
    • /
    • pp.135-145
    • /
    • 2006
  • This paper presents a novel approach to real-time recognition of 3D environment and objects for intelligent robots. First. we establish the three fundamental principles that humans use for recognizing and interacting with the environment. These principles have led to the development of an integrated approach to real-time 3D recognition and modeling, as follows: 1) It starts with a rapid but approximate characterization of the geometric configuration of workspace by identifying global plane features. 2) It quickly recognizes known objects in environment and replaces them by their models in database based on 3D registration. 3) It models the geometric details on the fly adaptively to the need of the given task based on a multi-resolution octree representation. SIFT features with their 3D position data, referred to here as stereo-sis SIFT, are used extensively, together with point clouds, for fast extraction of global plane features, for fast recognition of objects, for fast registration of scenes, as well as for overcoming incomplete and noisy nature of point clouds. The experimental results show the feasibility of real-time and behavior-oriented 3D modeling of workspace for robotic manipulative tasks.

  • PDF

CAD Model Generation from Point Clouds using 3D Grid Method (Grid 방법을 이용한 측정 점데이터로부터의 CAD모델 생성에 관한 연구)

  • 우혁제;강의철;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.435-438
    • /
    • 2001
  • Reverse engineering technology refers to the process that creates a CAD model of an existing part using measuring devices. Recently, non-contact scanning devices have become more accurate and the speed of data acquisition has increased drastically. However, they generate thousands of points per second and various types of point data. Therefore, it becomes a major issue to handle the huge amount and various types of point data. To generate a CAD model from scanned point data efficiently, these point data should be well arranged through point data handling processes such as data reduction and segmentation. This paper proposes a new point data handling method using 3D grids. The geometric information of a part is extracted from point cloud data by estimating normal values of the points. The non-uniform 3D grids for data reduction and segmentation are generated based on the geometric information. Through these data reduction and segmentation processes, it is possible to create CAD models autmatically and efficiently. The proposed method is applied to two quardric medels and the results are discussed.

  • PDF

Application of Terrestrial LiDAR for Reconstructing 3D Images of Fault Trench Sites and Web-based Visualization Platform for Large Point Clouds (지상 라이다를 활용한 트렌치 단층 단면 3차원 영상 생성과 웹 기반 대용량 점군 자료 가시화 플랫폼 활용 사례)

  • Lee, Byung Woo;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.177-186
    • /
    • 2021
  • For disaster management and mitigation of earthquakes in Korea Peninsula, active fault investigation has been conducted for the past 5 years. In particular, investigation of sediment-covered active faults integrates geomorphological analysis on airborne LiDAR data, surface geological survey, and geophysical exploration, and unearths subsurface active faults by trench survey. However, the fault traces revealed by trench surveys are only available for investigation during a limited time and restored to the previous condition. Thus, the geological data describing the fault trench sites remain as the qualitative data in terms of research articles and reports. To extend the limitations due to temporal nature of geological studies, we utilized a terrestrial LiDAR to produce 3D point clouds for the fault trench sites and restored them in a digital space. The terrestrial LiDAR scanning was conducted at two trench sites located near the Yangsan Fault and acquired amplitude and reflectance from the surveyed area as well as color information by combining photogrammetry with the LiDAR system. The scanned data were merged to form the 3D point clouds having the average geometric error of 0.003 m, which exhibited the sufficient accuracy to restore the details of the surveyed trench sites. However, we found more post-processing on the scanned data would be necessary because the amplitudes and reflectances of the point clouds varied depending on the scan positions and the colors of the trench surfaces were captured differently depending on the light exposures available at the time. Such point clouds are pretty large in size and visualized through a limited set of softwares, which limits data sharing among researchers. As an alternative, we suggested Potree, an open-source web-based platform, to visualize the point clouds of the trench sites. In this study, as a result, we identified that terrestrial LiDAR data can be practical to increase reproducibility of geological field studies and easily accessible by researchers and students in Earth Sciences.

Survey on 3D Surface Reconstruction

  • Khatamian, Alireza;Arabnia, Hamid R.
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.338-357
    • /
    • 2016
  • The recent advent of increasingly affordable and powerful 3D scanning devices capable of capturing high resolution range data about real-world objects and environments has fueled research into effective 3D surface reconstruction techniques for rendering the raw point cloud data produced by many of these devices into a form that would make it usable in a variety of application domains. This paper, therefore, provides an overview of the existing literature on surface reconstruction from 3D point clouds. It explains some of the basic surface reconstruction concepts, describes the various factors used to evaluate surface reconstruction methods, highlights some commonly encountered issues in dealing with the raw 3D point cloud data and delineates the tradeoffs between data resolution/accuracy and processing speed. It also categorizes the various techniques for this task and briefly analyzes their empirical evaluation results demarcating their advantages and disadvantages. The paper concludes with a cross-comparison of methods which have been evaluated on the same benchmark data sets along with a discussion of the overall trends reported in the literature. The objective is to provide an overview of the state of the art on surface reconstruction from point cloud data in order to facilitate and inspire further research in this area.