• Title/Summary/Keyword: 3D planning

Search Result 1,232, Processing Time 0.032 seconds

Collision-Free Path Planning of Articulated Robot using Configuration Space (형상 공간을 이용한 다관절 로보트의 충돌 회피 경로 계획)

  • Kim, J.H.;Choi, J.S.;Kang, H.Y.;Kim, Dong-Won;Yang, S.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.57-65
    • /
    • 1994
  • A collision-free path planning algorithm between an articulated robot and polyhedral obstacles using configuration space is presented. In configuration space, a robot is treated as a point and obstacles are treated as grown forbidden regions. Hence path planning problem is transformed into moving a point from start position to goal position without entering forbidden regions. For mapping to 3D joint space, slice projection method is used for first revolute joint and inverse kinematics is used for second and third revolute joint considering kinematic characteristics of industrial robot. Also, three projected 2D joint spaces are used in search of collision-free path. A proper example is provided to illustrate the proposed algorithm.

  • PDF

Layout Planning for Stereolithography Parts using 3D Collision Detection Algorithm (3차원 충돌탐지 알고리듬을 이용한 광조형물의 최적배치 알고리듬 개발)

  • Kim, Boo-Young;Lee, Seok-Hee;Kim, Ho-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1546-1554
    • /
    • 2003
  • Efficient layout in a fixed work volume reduces build time when multiple parts are built at once in stereolithography systems. An efficient algorithm is developed for 3D layout planning. And it reduces build time and increases efficiency of SLA system. Genetic algorithm is implemented to locate as many parts as possible in the fixed work volume. A 3D collision detection algorithm, k-DOPs Tree, is implemented for the fast evaluation of a layout plan.

Computer-aided Maxillofacial ablation and reconstruction Surgery (임상가를 위한 특집 1 - 컴퓨터 기반 악골 종양의 절제 및 재건술)

  • Moon, Seong-Yong;Lim, Sung-Hoon
    • The Journal of the Korean dental association
    • /
    • v.52 no.10
    • /
    • pp.596-601
    • /
    • 2014
  • Computer-aided surgery is popular and useful in the field of oral and maxillofacial surgery, because of the possibility of simulation with a high accuracy. In all aspects of surgery, proper planning facilitates more predictable operative results, however before the use of virtual planning, much of this relied on 2-dimensional (2-D) imaging for treatment planning on a 3-dimensional (3-D) object and surgical trial and error. With real-time instrument positioning and clear anatomic identification, a computer-assisted navigation system (CANS) is exceptionally helpful in maxillofacial surgery. These techniques enable performing precise bony ablation and reconstruction, and also decrease surgical time and donor site defect.

Development of Vision based Autonomous Obstacle Avoidance System for a Humanoid Robot (휴머노이드 로봇을 위한 비전기반 장애물 회피 시스템 개발)

  • Kang, Tae-Koo;Kim, Dong-Won;Park, Gwi-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.161-166
    • /
    • 2011
  • This paper addresses the vision based autonomous walking control system. To handle the obstacles which exist beyond the field of view(FOV), we used the 3d panoramic depth image. Moreover, to decide the avoidance direction and walking motion of a humanoid robot for the obstacle avoidance by itself, we proposed the vision based path planning using 3d panoramic depth image. In the vision based path planning, the path and walking motion are decided under environment condition such as the size of obstacle and available avoidance space. The vision based path planning is applied to a humanoid robot, URIA. The results from these evaluations show that the proposed method can be effectively applied to decide the avoidance direction and the walking motion of a practical humanoid robot.

Implementation of Wheelchair Robot Applying SLAM and Global Path Planning Methods Suitable for Indoor Autonomous Driving (실내 자율주행에 적합한 SLAM과 전역경로생성 방법을 적용한 휠체어로봇 구현)

  • Baek, Su-Jin;Kim, A-Hyeon;Kim, Jong-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.293-297
    • /
    • 2021
  • This paper presents how to create a 3D map and solve problems related to generating a global path planning for navigation. Map creation and localization were performed using the RTAB-Map package to create a 3D map of the environment. In addition, when the target point is within the obstacle space, the problem of not generating a global path was solved using the asr_navfn package. The performance of the proposed system is validated through experiments with a wheelchair-type robot.

Virtual Reality and 3D Printing for Craniopagus Surgery

  • Kim, Gayoung;Shim, Eungjune;Mohammed, Hussein;Kim, Youngjun;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2017
  • Purpose Surgery for separating craniopagus twins involves many critical issues owing to complex anatomical features. We demonstrate a 3D printed model and virtual reality (VR) technologies that could provide valuable benefits for surgical planning and simulation, which would improve the visualization and perception during craniopagus surgery. Material & Methods We printed a 3D model extracted from CT images of craniopagus patients using segmentation software developed in-house. Then, we imported the 3D model to create the VR environment using 3D simulation software (Unity, Unity Technologies, CA). We utilized the HTC Vive (HTC & Valve Corp) head-mount-display for the VR simulation. Results We obtained the 3D printed model of craniopagus patients and imported the model to a VR environment. Manipulating the model in VR was possible, and the 3D model in the VR environment enhanced the application of user-friendly 3D modeling in surgery for craniopagus twins. Conclusion The use of the 3D printed model and VR has helped understand complicated anatomical structures of craniopagus patients and has made communicating with other medical surgeons in the field much easier. Further, interacting with the 3D model is possible in VR, which enhances the understanding of the craniopagus surgery as well as the success rate of separation surgery while providing useful information on diagnosing and surgery planning.

3-Dimensional Path Planning and Guidance for High Altitude Long Endurance UAV Including a Solar Power Model (태양광 전력모델을 포함한 장기체공 무인기의 3차원 경로계획 및 유도)

  • Oh, Su-hun;Kim, Kap-dong;Park, Jun-hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.401-407
    • /
    • 2016
  • This paper introduces 3-dimensional path planning and guidance including power model for high altitude long endurance (HALE) UAV using solar energy. Dubins curve used in this paper has advantage of being directly available to apply path planning. However, most of the path planning problems using Dubins curve are defined in a two-dimensional plan. So, we used 3-dimensional Dubins path generation algorithm which was studied by Randal W. Beard. The aircraft model which used in this paper does not have an aileron. So we designed lateral controller by using a rudder. And then, we were conducted path tracking simulations by using a nonlinear path tracking algorithm. We generate examples according to altitude conditions. From the path tracking simulation results, we confirm that the path tracking is well on the flight path. Finally, we were modeling the power system of HALE UAVs and conducting path tracking simulation during 48hours. Modeling the amount of power generated by the solar cell through the calculation of the solar energy yield. And, we show the 48hours path tracking simulation results.

DL-RRT* algorithm for least dose path Re-planning in dynamic radioactive environments

  • Chao, Nan;Liu, Yong-kuo;Xia, Hong;Peng, Min-jun;Ayodeji, Abiodun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.825-836
    • /
    • 2019
  • One of the most challenging safety precautions for workers in dynamic, radioactive environments is avoiding radiation sources and sustaining low exposure. This paper presents a sampling-based algorithm, DL-RRT*, for minimum dose walk-path re-planning in radioactive environments, expedient for occupational workers in nuclear facilities to avoid unnecessary radiation exposure. The method combines the principle of random tree star ($RRT^*$) and $D^*$ Lite, and uses the expansion strength of grid search strategy from $D^*$ Lite to quickly find a high-quality initial path to accelerate convergence rate in $RRT^*$. The algorithm inherits probabilistic completeness and asymptotic optimality from $RRT^*$ to refine the existing paths continually by sampling the search-graph obtained from the grid search process. It can not only be applied to continuous cost spaces, but also make full use of the last planning information to avoid global re-planning, so as to improve the efficiency of path planning in frequently changing environments. The effectiveness and superiority of the proposed method was verified by simulating radiation field under varying obstacles and radioactive environments, and the results were compared with $RRT^*$ algorithm output.

A Study on Precision of 3D Spatial Model of a Highly Dense Urban Area based on Drone Images (드론영상 기반 고밀 도심지의 3차원 공간모형의 정밀도에 관한 연구)

  • Choi, Yeon Woo;Yoon, Hye Won;Choo, Mi Jin;Yoon, Dong Keun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.69-77
    • /
    • 2022
  • The 3D spatial model is an analysis framework for solving urban problems and is used in various fields such as urban planning, environment, land and housing management, and disaster simulation. The utilization of drones that can capture 3D images in a short time at a low cost is increasing for the construction of 3D spatial model. In terms of building a virtual city and utilizing simulation modules, high location accuracy of aerial survey and precision of 3D spatial model function as important factors, so a method to increase the accuracy has been proposed. This study analyzed location accuracy of aerial survey and precision of 3D spatial model by each condition of aerial survey for urban areas where buildings are densely located. We selected Daerim 2-dong, Yeongdeungpo-gu, Seoul as a target area and applied shooting angle, shooting altitude, and overlap rate as conditions for the aerial survey. In this study, we calculated the location accuracy of aerial survey by analyzing the difference between an actual survey value of CPs and a predicted value of 3D spatial Model. Also, We calculated the precision of 3D spatial Model by analyzing the difference between the position of Point cloud and the 3D spatial Model (3D Mesh). As a result of this study, the location accuracy tended to be high at a relatively high rate of overlap, but the higher the rate of overlap, the lower the precision of 3D spatial model and the higher the shooting angle, the higher precision. Also, there was no significant relationship with precision. In terms of baseline-height ratio, the precision tended to be improved as the baseline-height ratio increased.