• Title/Summary/Keyword: 3D object recognition

Search Result 268, Processing Time 0.028 seconds

OBJECT RECOGNITION ALGORITHM (물체 인지 알고리즘)

  • Shon, Howoong;Cho, Hyun C;Kim, Youngkyung
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.247-253
    • /
    • 2004
  • In this paper, 3D recognizing algorithm which is based on the external shape feature is presented. Since many objects have the regular shape, if we posses the database of pattern and we recognize the object using the database of the object's pattern, it is possible to inspect and/or recognize the objects of many fields. This paper handles on the 3D object recognition algorithm using the geometrical pattern matching by 3D database.

  • PDF

Recognition of partially occluded 3-D targets from computationally reconstructed integral images

  • Lee, Keong-Jin;Li, Gen;Lee, Guen-Sik;Hwang, Dong-Choon;Kim, Eun-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.761-762
    • /
    • 2008
  • In this paper, a novel approach for robust recognition of partially occluded 3-D target objects from computationally reconstructed integral images is proposed. The occluding object noises are selectively removed from the picked-up elemental images and performance of the proposed integral imaging-based 3-D target recognition system can be improved.

  • PDF

Object Recognition Using Planar Surface Segmentation and Stereo Vision

  • Kim, Do-Wan;Kim, Sung-Il;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1920-1925
    • /
    • 2004
  • This paper describes a new method for 3D object recognition which used surface segment-based stereo vision. The position and orientation of an objects is identified accurately enabling a robot to pick up, even though the objects are multiple and partially occluded. The stereo vision is used to get the 3D information as 3D sensing, and CAD model with its post processing is used for building models. Matching is initially performed using the model and object features, and calculate roughly the object's position and orientation. Though the fine adjustment step, the accuracy of the position and orientation are improved.

  • PDF

3-D Underwater Object Recognition Using PZT-Epoxy 3-3 Type Composite Ultrasonic Transducers (PZT-에폭시 3-3형 복합압전체 초음파 트랜스듀서를 사용한 3차원 수중 물체인식)

  • Cho, Hyun-Chul;Heo, Jin;SaGong, Geon
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.286-294
    • /
    • 2001
  • In this study, 3-D underwater object recognition using the self-made 3-3 type composite ultrasonic transducer and modified SOFM(Self Organizing Feature Map) neural network are investigated. Properties of the self-made 3-3 type composite specimens are satisfied considerably with requirements as an underwater ultrasonic transducer's materials. 3-D underwater all object's recognition rates obtained from both the training data and testing data in different objects, such as a rectangular block, regular triangular block, square block and cylinderical block, were 100% and 94.0%, respectively. All object's recognition rates are obtained by utilizing the self-made 3-3 type composite transducer and SOFM neural network. From the object recognition rates, it could be seen that an ultrasonic transducer fabricated with the self-made 3-3 type composite resonator will be able to have application for the underwater object recognition.

  • PDF

Recognition of the movement of a 3D object (물체의 3차원 운동방향 인식)

  • Lee, Hyun-Jung;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.470-473
    • /
    • 1990
  • In this thesis, the recognition method of the movement of an 3D object is presented. The information about the movement of a 3D object is used to recognize the object. There are 2 kinds of movements which are translation and rotation. A difference picture is obtained from a sequence of images of a moving object or a scene which is taken by a monocular stationary observer. The 3D movement of an object is recognized by the Artificial Neural Network(ANN) using the difference picture.

  • PDF

POSITION AND POSTURE ESTIMATION OF 3D-OBJECT USING COLOR AND DISTANCE INFORMATION

  • Ji, Hyun-Jong;Takahashi, Rina;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.535-540
    • /
    • 2009
  • Recently, autonomous robots which can achieve the complex tasks have been required with the advance of robotics. Advanced robot vision for recognition is necessary for the realization of such robots. In this paper, we propose a method to recognize an object in the actual environment. We assume that a 3D-object model used in our proposal method is the voxel data. Its inside is full up and its surface has color information. We also define the word "recognition" as the estimation of a target object's condition. This condition means the posture and the position of a target object in the actual environment. The proposal method consists of three steps. In Step 1, we extract features from the 3D-object model. In Step 2, we estimate the position of the target object. At last, we estimate the posture of the target object in Step 3. And we experiment in the actual environment. We also confirm the performance of our proposal method from results.

  • PDF

Neural Network Approach to Sensor Fusion System for Improving the Recognition Performance of 3D Objects (3차원 물체의 인식 성능 향상을 위한 감각 융합 신경망 시스템)

  • Dong Sung Soo;Lee Chong Ho;Kim Ji Kyoung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.156-165
    • /
    • 2005
  • Human being recognizes the physical world by integrating a great variety of sensory inputs, the information acquired by their own action, and their knowledge of the world using hierarchically parallel-distributed mechanism. In this paper, authors propose the sensor fusion system that can recognize multiple 3D objects from 2D projection images and tactile informations. The proposed system focuses on improving recognition performance of 3D objects. Unlike the conventional object recognition system that uses image sensor alone, the proposed method uses tactual sensors in addition to visual sensor. Neural network is used to fuse the two sensory signals. Tactual signals are obtained from the reaction force of the pressure sensors at the fingertips when unknown objects are grasped by four-fingered robot hand. The experiment evaluates the recognition rate and the number of learning iterations of various objects. The merits of the proposed systems are not only the high performance of the learning ability but also the reliability of the system with tactual information for recognizing various objects even though the visual sensory signals get defects. The experimental results show that the proposed system can improve recognition rate and reduce teeming time. These results verify the effectiveness of the proposed sensor fusion system as recognition scheme for 3D objects.

Optical implementation of 3D image correlator using integral imaging technique (집적영상 기술을 이용한 3D 영상 상관기의 광학적 구현)

  • Piao, Yongri;Kim, Seok-Tae;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1659-1665
    • /
    • 2009
  • In this paper, we propose an implementation method of 3D image correlator using integral imaging technique. In the proposed method, elemental images of the reference and signal 3D objects are recorded by lenslet arrays and then reference and signal output plane images with high resolution are optically reconstructed on the output plane by displaying these elemental images into a display panel. Through cross-correlations between the reconstructed reference and the single plane images, 3D object recognition is performed. The proposed method can provide a precise 3D object recognition by using the high-resolution output plane images compared with the previous methods and implement all-optical structure for real-time 3D object recognition system. To show the feasibility of the proposed method, optical experiments are carried out and the results are presented.

Model-based 3-D object recognition using hopfield neural network (Hopfield 신경회로망을 이용한 모델 기반형 3차원 물체 인식)

  • 정우상;송호근;김태은;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.60-72
    • /
    • 1996
  • In this paper, a enw model-base three-dimensional (3-D) object recognition mehtod using hopfield network is proposed. To minimize deformation of feature values on 3-D rotation, we select 3-D shape features and 3-D relational features which have rotational invariant characteristics. Then these feature values are normalized to have scale invariant characteristics, also. The input features are matched with model features by optimization process of hopjfield network in the form of two dimensional arrayed neurons. Experimental results on object classification and object matching with the 3-D rotated, scale changed, an dpartial oculued objects show good performance of proposed method.

  • PDF