• Title/Summary/Keyword: 3D object model

Search Result 574, Processing Time 0.025 seconds

3-D Information Model for High-speed Railway Infrastructures (고속철도시설물을 위한 3차원정보모델)

  • Shim, Chang-Su;Kim, Deok-Won;Youn, Nu-Ri
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.241-246
    • /
    • 2008
  • Design of a high-speed railway line requires collaboration of heterogeneous application systems and of engineers with different background. Object-based 3D models with metadata can be a shared information model for the effective collaborative design. In this paper, railway infrastructure information model is proposed to enable integrated and inter-operable works throughout the life-cycle of the railway infrastructures, from planning to maintenance. In order to develop the model, object-based 3-D models were built for a 10km railway among Korea high-speed railway lines. The model has basically three information layers for designers, contractors and an owner, respectively. Prestressed concrete box-girders are the most common superstructure of bridges. The design information layer has metadata on requirements, design codes, geometry, analysis and so on. The construction layer has data on drawings, real data for material and products, schedules and so on. The maintenance layer for the owner has the final geometry, material data, products and their suppliers and so on. These information has its own data architecture which is derived from similar concept of product breakdown structure(PBS) and work breakdown structure(WBS). The constructed RIIM for the infrastructures of the high-speed railway was successfully applied to various areas such as design check, structural analysis, automated estimation, construction simulation, virtual viewing, and digital mock-up. The integrated information model can realize virtual construction system for railway lines and dramatically increase the productivity of the whole engineering process.

  • PDF

Investigation on the 3-D design guidelines of structures (구조물의 3차원 설계 패러다임을 위한 지침에 대한 고찰)

  • Shim, Chang-Su;Kim, Yong-Han;Jeon, Seung-Min;Kwak, Tae-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.301-306
    • /
    • 2007
  • Design of civil infrastructures is generally based on 2-D drawings and analyses. Design provisions also specify the limit states using member based equations. Most construction projects are done through collaboration of engineers who have different specialized knowledge. Information technologies can dramatically enhance the performance of the collaboration. For the information transfer, we need a mediator between engineers. Object based 3-D models are useful for the communication and for the owners who have to maintain whole the information of infrastructures. In this paper, basic guidelines for the 3-D design according to design phases. Adequate interoperability of 3-D objects from any CAD system is essential for the collaboration. Owners, contractors and design consultants were considered as users of 3-D objects. Cost and performance of each design phases was investigated through the existing data.

  • PDF

Design and Implementation of Object Classes for Terrain Simulation (지형형상화를 위한 객체 클래스 설계 및 구현)

  • 노용덕
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.1
    • /
    • pp.61-69
    • /
    • 1997
  • In 3D computer graphics, fractal techniques have been applied to terrain models. Even though fractal models are convenient way to get the data of terrain models, it is not easy to gain the final results by manipulating the data of terrain model. However, by using the object oriented programming techniques, we could reduce the effort of programming job to find the final result. In this paper, a set of classes made by object oriented programming technique is presented. To show the results, the data of a terrain model were made by a fractal technique, namely, the midpoint displacement methods with square lattices of points.

  • PDF

Level of Detail Data Model for Efficient Data Transmission of 3-D GIS (3차원 공간정보시스템 데이터의 효율적 전송을 위한 세밀도 모델)

  • Lee, Hyun-Suk;Moon, Jung-Wook;Li, Ki-Joune
    • Spatial Information Research
    • /
    • v.14 no.3 s.38
    • /
    • pp.321-334
    • /
    • 2006
  • 3D spatial data are of increasing interest in landscape analysis, urban planning and map services based on Web, because of its reality. But the amount of 3D spatial data are very large in comparison with 2D spatial data. Therefore it is necessary to have a efficient methods to transfer and visualize 3D spatial data. The concept of Level of Detail in Computer Graphics is effective. This paper briefly presents two LOD data models of data transmission based on the spatial data model of international standards. First, it is separated LOD model that gives a LOD level to object. Second is Selective LOD model that gives a LOD level to object's element. We compared the efficiency of 3D data transmission based on two LOD model.

  • PDF

An Analysis of 3-D Object Characteristics Using Locally Linear Embedding (시점별 형상의 지역적 선형 사상을 통한 3차원 물체의 특성 분석)

  • Lee, Soo-Chahn;Yun, Il-Dong
    • Journal of Broadcast Engineering
    • /
    • v.14 no.1
    • /
    • pp.81-84
    • /
    • 2009
  • This paper explores the possibility of describing objects from the change in the shape according to the change in viewpoint. Specifically, we sample the shapes from various viewpoints of a 3-D model, and apply dimension reduction by locally linear embedding. A low dimensional distribution of points are constructed, and characteristics of the object are described from this distribution. Also, we propose two 3-D retrieval methods by applying the iterative closest point algorithm, and by applying Fourier transform and measuring similarity by modified Housdorff distance, and present experimental results. The proposed method shows that the change of shape according to the change in viewpoint can describe the characteristics of an object.

Automatic Generation of Analysis Model Using Multi-resolution Modeling Algorithm (다중해상도 알고리즘을 이용한 자동 해석모델 생성)

  • Kim M.C.;Lee K.W.;Kim S.C.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.172-182
    • /
    • 2006
  • This paper presents a method to convert 3D CAD model to an appropriate analysis model using wrap-around, smooth-out and thinning operators that have been originally developed to realize the multi-resolution modeling. Wrap-around and smooth-out operators are used to simplify 3D model, and thinning operator is to reduce the dimension of a target object with simultaneously decomposing the simplified 3D model to 1D or 2D shapes. By using the simplification and dimension-reduction operations in an appropriate way, the user can generate an analysis model that matches specific applications. The advantage of this method is that the user can create optimized analysis models of various simplification levels by selecting appropriate number of detailed features and removing them.

A Study on the Recognition of Polyhedral Object using 3-D Information (3차원 정보를 이용한 다면체의 물제인식에 관한 연구)

  • 김영일;우동임;백남칠;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.458-469
    • /
    • 1989
  • A measurement method is proposed which finds 3-D position and attitude of a known polyhedra utilizing shading information. Through the systematic interpretation of relations between polyhedra and its image as well as shadow image and also the determination of candidate position, 3-D information with respect to vertex of polyhedra is extracted. Following preprocessing of this information, the image of polyhedra is represented in terms of the scene with positioned object and the correspondence is searched by means of matching process between a scene description of the object and the correspondence is searched by means of matching process between a scene description of the object and a model description stored in data-base. In the experiments, initially 3-D information is employed to select several model regions, and objects are recognized through matching process with respect to scene regions. The results demonstrate that the recognition system performs with a high efficiency by proper selection of the threshold values.

A Study on the Recognition of Curved Objects Using Range Data (3차원 화상을 이용한 곡면물체의 자동인식에 관한 연구)

  • 양우석;장종환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.1910-1924
    • /
    • 1994
  • Curved 3D objects represented by range data contain large amounts of information compared with planar objects, but do not have distinct features for matching to those of object models. This makes it difficult to represent and identify a general 3D curved object. This paper introduces a new view-point independent approach to recognizing general 3D curved objects using range data. Our approach makes use of the relative geometric differences between particular points on the object surface and some model points. The model points are prespecified arbitrarily and keeping the task in mind so that the following task can be easily described using the model points. Our approach has several advantages. Since model points are specified arbitrarily and task dependently, further processing can be reduced in application by locating the model points at places which are useful for further operations in the task. The knowledge base is simple with less storage requirement. And, it is easy to compensate the uncertainties of positions estimation caused by noise and quantization error.

  • PDF

INTEGRATED CONSTRUCTION PROJECT PLANNING USING 3D INFORMATION MODELS

  • Chang-Su Shim;Kwang-Myong Lee;Deok-Won Kim;Yoon-Bum Lee;Kyoung-Lae Park
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.928-934
    • /
    • 2009
  • Although the evolution and deployment of information technologies will undoubtedly play an important role in the current construction industry, many engineers are still unsure of the economic value of using these technologies. Especially for the planning of a construction project, a collaboration system to utilize the whole resources is a essential tool for the successful outcome. A detailed, authoritative, and readily accessible information model is needed to enable engineers to make cost-effective decisions among established and innovative plan alternatives. Most engineers rely on limited private experiences when they create solutions or design alternatives. Initial planning is crucial for the success of the construction project. Most construction projects are done through collaboration of engineers who have different specialized knowledge. Information technologies can dramatically enhance the performance of the collaboration. For the information delivery, we need a mediator between engineers. Object-based 3-D models are useful for the communication and decision assistance for the intelligent project design. In this paper, basic guidelines for the 3-D design according to different construction processes are suggested. Adequate interoperability of 3-D objects from any CAD system is essential for the collaboration. Basic architectures of geometry models and their information layer were established to enable interoperability for design checks, estimation and simulation. A typical international project for roadway was chosen for the pilot project. 3-D GIS model was created and bridge information models were created considering several requirements for planning and decision making of the project. From the pilot test, the integrated construction project planning using 3-D information models was discussed and several guidelines were suggested.

  • PDF

Three-dimensional Active Shape Model for Object Segmentation (관심 객체 분할을 위한 삼차원 능동모양모델 기법)

  • Lim, Seong-Jae;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.335-336
    • /
    • 2006
  • In this paper, we propose an active shape image segmentation method for three-dimensional(3-D) medical images using a generation method of the 3-D shape model. The proposed method generates the shape model using a distance transform and a tetrahedron method for landmarking. After generating the 3-D model, we extend the training and segmentation processes of 2-D active shape model(ASM) and improve the searching process. The proposed method provides comparative results to 2-D ASM, region-based or contour-based methods. Experimental results demonstrate that this algorithm is effective for a semi-automatic segmentation method of 3-D medical images.

  • PDF