• Title/Summary/Keyword: 3D numerical model

Search Result 1,545, Processing Time 0.038 seconds

Study on the Numerical Analysis for Microenvironments in Bed Mattress (침대 매트리스의 미환경을 위한 수치해석적 연구)

  • 지명국;배철환;신재호;정효민;추미선;정한식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.167-173
    • /
    • 2001
  • This paper represents the numerical analysis for microenvironments various temperature and humidity in bed mattress. He purpose of this study is for healthful bed mattress by controling a bacteria with a prediction of the vapor and temperature distributions in the bed mattress. The numerical model is one dimensional unsteady state and the governing equations were discretized by fully implicit scheme. The numerical results were compared with experimental data, and showed a good agreement with them. Specially, the excess-relative humidity shows a lower distribution near the surface of mattress, meaning that the optimum living condition for bacteria will be caused.

  • PDF

Numerical Study of Contaminant Pathway for Risk Assessment in Subsurface of Contaminated Sites (오염부지 위해성평가 시 오염물질 노출이동경로 평가를 위한 수치모델 적용에 관한 연구)

  • Chang, Sun Woo;Moon, Hee Sun;Lee, Eunhee;Joo, Jin Chul;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.3
    • /
    • pp.13-23
    • /
    • 2019
  • The purpose of this study is to suggest conceptual models based on finite numerical method that can be used to assess contaminant transport through subsurface and estimate exposed concentration at contaminated site. This study tested various assumptions of the numerical models for contaminant transport in unsaturated and saturated zones to simulate the pathways to the human exposal point. For this purpose, models for seven possible scenarios of contaminant transport were simulated using the numerical code MODFLOW and MT3D. The simulation results that showed different peak concentrations and travel times were compared. In conclusion, the potential utility of the numerical models in the site specific risk analysis suggested as well as future research ramifications.

Field testing and numerical modeling of a low-fill box culvert under a flexible pavement subjected to traffic loading

  • Acharya, Raju;Han, Jie;Parsons, Robert L.;Brennan, James J.
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.625-638
    • /
    • 2016
  • This paper presents field study and numerical modeling results for a single-cell low-fill concrete box culvert under a flexible pavement subjected to traffic loading. The culvert in the field test was instrumented with displacement transducers to capture the deformations resulting from different combinations of static and traffic loads. A low-boy truck with a known axle configuration and loads was used to apply seven static load combinations and traffic loads at different speeds. Deflections under the culvert roof were measured during loading. Soil and pavement samples were obtained by drilling operation on the test site. The properties of the soil and pavement layers were determined in the laboratory. A 3-D numerical model of the culvert was developed using a finite difference program FLAC3D. Linear elastic models were used for the pavement layers and soil. The numerical results with the material properties determined in the laboratory were compared with the field test results. The observed deflections in the field test were generally smaller under moving loads than static loads. The maximum deflections measured during the static and traffic loads were 0.6 mm and 0.41 mm respectively. The deflections computed by the numerical method were in good agreement with those observed in the field test. The deflection profiles obtained from the field test and the numerical simulation suggest that the traffic load acted more like a concentrated load distributed over a limited area on the culvert. Elastic models for culverts, pavement layers, and surrounding soil are appropriate for numerical modeling of box culverts under loading for load rating purposes.

Quasi-3D Wave-Induced Circulation Model (준 3차원적 연안류 모형)

  • Lee, Jung-Lyul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.459-471
    • /
    • 1994
  • A numerical scheme solving the quasi-3D wave-induced circulation is presented. The governing equations have been solve implicitly using a fractional step method in conjunction with the approximate factroization techniques. The equation of each step was discretized by the finite volume scheme which yields more accurate and conservative approximations than the schemes based on finite differences. Examples of computed nearshore current patterns are presented to demonstrate the validity of the model for typical situations through comparison with laboratory experimental data (Gourlay. 1974).

  • PDF

Assessing the Influence Radius of a Water Treatment System Installed in a Reservoir Using Tracer Experiment and 3D Numerical Simulation (추적자 실험 및 3차원 수치모의를 이용한 저수지 수처리 장치의 영향반경 평가)

  • Park, Hyung Seok;Lee, Eun Ju;Ji, Hyun Seo;Choi, Sun Hwa;Chun, Se Woong
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.3-12
    • /
    • 2018
  • The objective of this study was to evaluate the radius of influence of effluent of water treatment system developed for the purpose of improvement of reservoir water quality using fluorescent dye (Rhodamine-WT) tracer experiment and 3-D numerical model. The tracer experiment was carried out in a medium-sized agricultural reservoir with a storage capacity of $227,000m^3$ and an average depth of 1.6 m. A guideline with a total length of 160 m was installed at intervals of 10 m in the horizontal direction from the discharge part, and a Rhodamine measurement sensor (YSI 6130, measurement range $0-200{\mu}g/L$) was used to measure concentration changes in time, distance, and depth. Experimental design was established in advance through Jet theory and the diffusion process was simulated using ELCOM, a three dimensional hydraulic dynamics model. As a result of the study, the direct effect radius of the jet emitted from the applied water treatment system was about 50-70 m, and the radius of physical effect by the advection diffusion was judged to be 100-120 m. The numerical simulations of effluent advection-diffusion of the water treatment system using ELCOM showed very similar results to those of the impact radius analysis using the tracer experiment and jet flow empirical equations. The results provide valuable information on the spatial extent of the water quality improvement devices installed in the reservoir and the facility layout design.

Numerical Simulation of Tsunami Force Acting on Onshore Bridge (for Tsunami Bore) (연안교량에 작용하는 지진해일파력에 관한 수치시뮬레이션(단파의 경우))

  • Lee, Kwang-Ho;Woo, Kyung-Hwan;Kim, Do-Sam;Jeong, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.46-61
    • /
    • 2017
  • In the present work, the interaction analysis between tsunami bore and onshore bridge is approached by a numerical method, where the tsunami bore is generated by difference of upstream side and downstream side water levels. Numerical simulation in this paper was carried out by TWOPM-3D(three-dimensional one-field model for immiscible two-phase flows), which is based on Navier-Stokes solver. In order to verify the applicability of force acting on an onshore bridge, numerical results and experimental results were compared and analyzed. From this, we discussed the characteristics of horizontal force and vertical force(uplift force and downward force) changes including water level and velocity change due to the tsunami bore strength, water depth, onshore bridge form and number of girder. Furthermore, It was revealed that the entrained air in the fluid flow highly affected the vertical force.

Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs

  • Yu, Zhixiang;Zhu, Fu;Cao, Ruizhou;Chen, Xiaoxiao;Zhao, Lei;Zhao, Shichun
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.31-47
    • /
    • 2019
  • The accurate prediction of snow distributions under the wind action on roofs plays an important role in designing structures in civil engineering in regions with heavy snowfall. Affected by some factors such as building shapes, sizes and layouts, the snow drifting on roofs shows more three-dimensional characteristics. Thus, the research on three-dimensional snow distribution is needed. Firstly, four groups of stepped flat roofs are designed, of which the width-height ratio is 3, 4, 5 and 6. Silica sand with average radius of 0.1 mm is used to model the snow particles and then the wind tunnel test of snow drifting on stepped flat roofs is carried out. 3D scanning is used to obtain the snow distribution after the test is finished and the mean mass transport rate is calculated. Next, the wind velocity and duration is determined for numerical simulations based on similarity criteria. The adaptive-mesh method based on radial basis function (RBF) interpolation is used to simulate the dynamic change of snow phase boundary on lower roofs and then a time-marching analysis of steady snow drifting is conducted. The overall trend of numerical results are generally consistent with the wind tunnel tests and field measurements, which validate the accuracy of the numerical simulation. The combination between the wind tunnel test and CFD simulation for three-dimensional typical roofs can provide certain reference to the prediction of the distribution of snow loads on typical roofs.

2D numerical investigations of twin tunnel interaction

  • Do, Ngoc Anh;Dias, Daniel;Oreste, Pierpaolo;Djeran-Maigre, Irini
    • Geomechanics and Engineering
    • /
    • v.6 no.3
    • /
    • pp.263-275
    • /
    • 2014
  • The development of transportation in large cities requires the construction of twin tunnels located at shallow depth. As far as twin tunnels excavated in parallel are concerned, most of the cases reported in literature focused on considering the effect of the ground condition, tunnel size, depth, surface loads, the relative position between two tunnels, and construction process on the structural lining forces. However, the effect of the segment joints was not taken into account. Numerical investigation performed in this study using the $FLAC^{3D}$ finite difference element program made it possible to include considerable influences of the segment joints and tunnel distance on the structural lining forces induced in twin tunnels. The structural lining forces induced in the first tunnel through various phases are considerably affected by the second tunnel construction process. Their values induced in a segmental lining are always lower than those obtained in a continuous lining. However, the influence of joint distribution in the second tunnel on the structural forces induced in the first tunnel is insignificant. The critical influence distance between two tunnels is about two tunnel diameters.

Numerical Study of 3D Unsteady Flow in a Blood Sac of TPLS: Effect of Actuator Speed (TPLS 혈액주머니 내의 3차원 비정상유동에 대한 수치해석 연구: 액추에이터 속도의 영향)

  • Jung G. S.;Seong H. C.;Park M. S.;Ko H. J.;Shim E. B.;Min B. G.;Park C. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.206-211
    • /
    • 2003
  • This paper reports the numerical results for blood flow of the sac squeezed by moving actuator in the TPLS(Twin Pulse Life Support System). Blood flow in the sac is assumed to be 3-dimensional unsteady newtonian fluid. where the blood flow interacts with the sac, which is activated by the moving actuator. The flow field is simulated numerically by using the FEM code, ADINA. It is well known that hemolysis is closely related to shear stress acted on blood flow. According to this fact, we simulate four models with different speed for moving actuator and examine the distribution of shear stress for each model. Numerical results show that maximum shear stress is strongly dependent on the actuator speed.

  • PDF