• 제목/요약/키워드: 3D numerical model

검색결과 1,530건 처리시간 0.036초

TOUGH2-MP/FLAC3D의 Barcelona Basic Model 해석 모듈 개발 (Implementation of Barcelona Basic Model into TOUGH2-MP/FLAC3D)

  • 이창수;이재원;김민섭;김건영
    • 터널과지하공간
    • /
    • 제30권1호
    • /
    • pp.39-62
    • /
    • 2020
  • 본 연구에서는 불포화토의 열-수리적 변화로 야기되는 역학적 거동 특성을 분석하고 장기 거동을 예측하기 위해 Barcelona Basic Model(BBM) 해석 모듈을 TOUGH2-MP/FLAC3D에서 구동할 수 있도록 개발하였다. 기본적으로는 TOUGH-FLAC에 BBM 해석 모듈을 개발하기 위해 사용된 선행연구의 방법과 마찬가지로 FLAC에서 제공하고 있는 Modified Cam Clay Model(MCCM)을 기반으로 User Defined Model(UDM)과 FLAC3D에서 제공하는 FISH function을 이용하였다. 본 연구에서 개발한 BBM 해석 모듈에서는 평균유효응력뿐만 아니라 흡입력의 변화에 따른 소성변형률을 모두 고려하였으며, 평균유효응력 및 흡입력 증가에 따른 항복면의 변화를 모두 반영할 수 있도록 하였다. 개발된 BBM 해석 모듈을 FLAC3D 매뉴얼에 기술되어 있는 MCCM 예제, BBM을 처음 제안한 선행연구에 언급되어 있는 예제들, 그리고 스웨덴 SKB 보고서에 언급되어 있는 실험실 시험 결과를 이용하여 검증하였다. 뿐만 아니라, 효과적인 BBM의 파라미터 도출을 목적으로 개발된 Quick tools의 검증을 위해 수행된 일련의 모델링 시험들을 동일하게 수행하고 선행연구에서 보고된 Quick tools와 Code_Bright의 결과와 비교함으로써 개발된 BBM 해석 모듈을 검증하였다.

Implementation of Q-Tensor Model into 3-D Finite Element Method (FEM) Numerical Solver

  • Shin, Woo-Jung;Yoon, Hyung-Jin;Won, Tae-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.509-512
    • /
    • 2007
  • In this paper, we report our successful implementation of Q tensor model in threedimensional finite element method (FEM) simulator. The 3D-FEM Q tensor-model-based simulation revealed that the spaly-to-bend transition occurs only at 4 V while the vector-model based FEM solver provides an erroneous transition voltage of 8 V.

  • PDF

Three-Dimensional Numerical Simulation of Intrusive Density Currents

  • An, Sangdo
    • 한국환경과학회지
    • /
    • 제23권7호
    • /
    • pp.1223-1232
    • /
    • 2014
  • Density currents have been easily observed in environmental flows, for instance turbidity currents and pollutant plumes in the oceans and rivers. In this study, we explored the propagation dynamics of density currents using the FLOW-3D computational fluid dynamics code. The renormalization group (RNG) $k-{\varepsilon}$ scheme, a turbulence numerical technique, is employed in a Reynold-averaged Navier-Stokes framework (RANS). The numerical simulations focused on two different types of intrusive density flows: (1) propagating into a two-layer ambient fluid; (2) propagating into a linearly stratified fluid. In the study of intrusive density flows into a two-layer ambient fluid, intrusive speeds were compared with laboratory experiments and analytical solutions. The numerical model shows good quantitative agreement for predicting propagation speed of the density currents. We also numerically reproduced the effect of the ratio of current depth to the overall depth of fluid. The numerical model provided excellent agreement with the analytical values. It was also clearly demonstrated that RNG $k-{\varepsilon}$ scheme within RANS framework is able to accurately simulate the dynamics of density currents. Simulations intruding into a continuously stratified fluid with the various buoyancy frequencies are carried out. These simulations demonstrate that three different propagation patterns can be developed according to the value of $h_n/H$ : (1) underflows developed with $h_n/H=0$ ; (2) overflows developed when $h_n/H=1$ ; (3) intrusive interflow occurred with the condition of 0 < $h_n/H$ < 1.

원뿔형 벤츄리수로의 수리특성 (Hydraulic Characteristics in the Movable Venturi Flume with Circular Cone)

  • 김대근
    • 상하수도학회지
    • /
    • 제27권2호
    • /
    • pp.177-184
    • /
    • 2013
  • This study analyzed the hydraulic characteristics of a venturi flume with a circular cone using a 3-D numerical model which uses RANS(Reynolds-Averaged Navier-Stokes Equation) as the governing equation. The venturi flume with the circular cone efficiently measures the discharge in the low-flow to high-flow range and offers the advantage of accurate discharge measurements in the case of a low flow. With no influence of the tail-water depth, the stage-discharge relationship and the flow behaviors were analyzed to verify the numerical simulation results. Additionally, this study reviewed the effect of the tail-water depth on the flow. The stage-discharge relationship resulting from a numerical simulation in the absence of an effect by the tail-water depth showed a maximum margin of error of 4 % in comparison to the result of a hydraulic experiment. The simulation results reproduced the overall flow behaviors observed in the hydraulic experiment well. The flow starts to become influenced by the tail-water depth when the ratio of the tail-water depth to the total head exceeds approximately 0.7. As the ratio increases, the effect on the flow tends to grow dramatically. As shown in this study, a numerical simulation is effective for identifying the stage-discharge relationship of a venturi flume with various types of venturi bodies, including a venturi flume with a circular cone.

지반-말뚝 동적 상호 작용을 고려한 말뚝의 수치 모델링 : 메쉬 크기와 형상에 대한 매개 변수 연구 (Parametric Study with the Different Size of Meshes in Numerical Analysis Considering the Dynamic Soil-Pile Interactions)

  • 나선홍;김성환;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1441-1446
    • /
    • 2009
  • Numerical analysis is a powerful method in evaluating the soil-pile-structure interaction under the dynamic loading, and this approach has been applied to the practical area due to the development of computer technology. Finite Difference Method, one of the most popular numerical methods, is sensitive to the shape and the number of mesh. However, the trial and error approach is conducted to obtain the accurate results and the reasonable simulation time because of the lack of researches about mesh size and the number. In this study, FLAC 3D v3.1 program(FDM) is used to simulate the dynamic pile model tests, and the numerical results are compared with the 1G shaking table tests results. With the different size and shape of mesh, the responses of pile behavior and the simulation time are estimated, and the optimum mesh sizes in dynamic analysis of single pile is studied.

  • PDF

Numerical analysis of RC hammer head pier cap beams extended and reinforced with CFRP plates

  • Tan, Cheng;Xu, Jia;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • 제25권5호
    • /
    • pp.461-470
    • /
    • 2020
  • This paper presents a numerical study on structural behavior of hammer head pier cap beams, extended on verges and reinforced with carbon fiber reinforced polymer (CFRP) plates. A 3-D finite element (FE) model along with a simplified analytical model are presented. Concrete damage plasticity (CDP) was adapted in the FE model and an analytical approach predicting the CFRP anchor strength was adapted in both FE and analytical model. Total five quarter-scaled pier cap beams with various CFRP reinforcing schemes were experimentally tested and analyzed with numerical approaches. Comparison between experimental results, FE results, analytical results and current ACI guideline predictions was presented. The FE results showed good agreement with experimental results in terms of failure mode, ultimate capacity, load-displacement response and strain distribution. In addition, the proposed strut-and-tie based analytical model provides the most accurate prediction of ultimate strength of extended cap beams among the three numerical approaches.

Numerical Investigation on Flow Pattern over Backward-Facing Step for Various Step Angles and Reynolds numbers

  • Lee, Jeong Hu;Nguyen, Van Thinh
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.60-60
    • /
    • 2021
  • Investigating Backward-Facing Step(BFS) flow is important in that it is a representative case for separation flows in various engineering flow systems. There have been a wide range of experimental, theoretical, and numerical studies to investigate the flow characteristics over BFS, such as flow separation, reattachment length and recirculation zone. However, most of such previous studies were concentrated only on the perpendicular step angle. In this study, several numerical investigations on the flow pattern over BFS with various step angles (10° ~ 90°) and expansion ratios (1.48, 2 and 3.27) under different Reynolds numbers (5000 ~ 64000) were carried out, mainly focused on the reattachment length. The numerical simulations were performed using an open source 3D CFD software, OpenFOAM, in which the velocity profiles and turbulence intensities are calculated by RANS (Reynolds Averaged Navier-Stokes equation) and 3D LES (Large Eddy Simulation) turbulence models. Overall, it shows a good agreement between simulations and the experimental data by Ruck and Makiola (1993). In comparison with the results obtained from RANS and 3D LES, it was shown that 3D LES model can capture much better and more details on the velocity profiles, turbulence intensities, and reattachment length behind the step for relatively low Reynolds number(Re < 11000) cases. However, the simulation results by both of RANS and 3D LES showed very good agreement with the experimental data for the high Reynolds number cases(Re > 11000). For Re > 11000, the reattachment length is no longer dependent on the Reynolds number, and it tends to be nearly constant for the step angles larger than 30°.) Based on the calibrated and validated numerical simulations, several additional numerical simulations were also conducted with higher Reynolds number and another expansion ratio which were not considered in the experiments by Ruck and Makiola (1993).

  • PDF

액주를 이용한 충격파 완화에 대한 수치해석 (Computational Analysis of Mitigation of Shock wave using Water Column)

  • 라자세칼;김태호;김희동
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.49-57
    • /
    • 2022
  • The interaction of planar shock wave with rectangular water column is investigated numerically. The flow phenomenon like reflection, transmission, cavitation, recirculation of shock wave, and large negative pressure due to expansion waves was discussed qualitatively and quantitatively. The numerical simulation was performed in a shock tube with a water column, and planar shock was initiated with a pressure ratio of 10. Three cases of the water column with different thicknesses, namely 0.5D, 1D, and 2D, were installed and studied. Water naturally has a higher acoustic impedance than air and mitigates the shock wave considerably. The numerical simulations were modelled using Eulerian and Volume of fluids multiphase models. The Eulerian model assumes the water as a finite structure and can visualize the shockwave propagation inside the water column. Through the volume of fluids model, the stages of breakup of the water column and mitigation effects of water were addressed. The numerical model was validated against the experimental results. The computational results show that the installation of a water column significantly impacts the mitigation of shock wave.

평면변형해석과 3-D FEM 기법을 통한 지오텍스타일 튜브의 거동해석 (Behavior of Geotextile Tube by Plane Strain Analysis and 3-Dimensional Finite Element Method)

  • 신은철;오영인
    • 한국지반공학회논문집
    • /
    • 제19권5호
    • /
    • pp.233-241
    • /
    • 2003
  • 최근 들어 지오텍스타일 튜브공법은 과거의 임시공법의 한계를 극복하고 다양한 분야에서 주요적용공법으로 활용이 확대되고 있다. 본 연구에서는 수치해석기법을 활용하여 지오텍스타일 튜브의 시공과정에서의 거동에 대하여 연구를 수행하였으며, 수치해석결과를 기존 연구 발표된 현장 모형시험 결과와 비교 분석하였다. 수치해석은 평면변형해석과 3차원 유한요소해석 기법을 이용하여 채움 과정에서 발생하는 정수압에 따른 지오텍스타일 튜브의 형태변화와 실대형 현장실험 결과를 비교 분석하였다. 또한, 3차원 유한요소해석에서는 정수압과 지오텍스타일의 강성변화에 따른 매개변수 해석을 통하여 지오텍스타일 튜브공법의 3차원 유한요소해석 기법을 제시하였다. 평면변형 해석이론에 의한 수치해석은 지오텍스타일 튜브 전용해석 프로그램인 GeoCoPS(version 2.0)를 활용하였으며, 3차원 유한요소 해석은 범용 유한요소해석 프로그램 ABAQUS(version 5.88)를 이용하였다. 평면변형 해석과 3차원 유한요소해석 결과 모두 실대형 현장실험 결과와 근접한 거동을 나타내었으며 적용토사의 종류 및 해석상의 가정사항으로 약간의 차이점들은 발생하지만 평면변형해석 및 3차원 유한요소해석방법을 통하여 채움과정에서의 지오텍스타일 튜브의 거동을 예측할 수 있다.

회전 용적형 기어펌프의 캐비테이션 유동 해석 (Numerical Simulations of Cavitation Flow in Volumetric Gear Pump)

  • 이중호;이상욱
    • 한국가시화정보학회지
    • /
    • 제9권4호
    • /
    • pp.28-34
    • /
    • 2011
  • A volumetric gear pump is often used in extensive industrial applications to provide both high pressure and sufficiently high flow rate by physical displacement of finite volume of fluid with each revolution. Template mesh function in commercial CFD software, PumpLinx, by which 3-D meshes in the complex region between rotor and housing can be readily generated was employed for 3-D flow simulations. For cavitation analysis full cavitation model was included in 3-D simulations. The results showed high pulsation in pressure and flowrate which is implicated in pump vibration and noise. A model test for cavitation visualization was conducted and the results showed good qualitative agreement with numerical prediction.