• Title/Summary/Keyword: 3D navigation error

Search Result 93, Processing Time 0.02 seconds

Development of Software GPS Receiver for GEO Satellites Using Weak Signal Receiver Algorithm (미약신호 수신 알고리즘을 활용한 정지궤도위성 탑재용 소프트웨어 GPS 수신기 개발)

  • Kim, Chong-Won;Kim, Ghang-Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.312-318
    • /
    • 2014
  • The altitudes of GEO satellites are higher than those of GPS satellites. Therefore the visibility and the received power of GPS signals are totally different from those of the users near the Earth's surface. In this study, we analyzed the visibility of GPS signals received on GEO satellites. And we also developed a software GPS receiver that works on GEO satellites using CCMDB algorithm which is a weak signal receiver algorithm. GPS signals received on a GEO satellite are generated by a commercial hardware GPS simulator and used for the verification of the developed software GPS receiver. The mean 3D position and velocity error are calculated as 165.636 m and 0.5081 m/s.

Multiple Reference Network Data Processing Algorithms for High Precision of Long-Baseline Kinematic Positioning by GPS/INS Integration (GPS/INS 통합에 의한 고정밀 장기선 동적 측위를 위한 다중 기준국 네트워크 데이터 처리 알고리즘)

  • Lee, Hung-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.135-143
    • /
    • 2009
  • Integrating the Global Positioning System (GPS) and Inertial Navigation System (INS) sensor technologies using the precise GPS Carrier phase measurements is a methodology that has been widely applied in those application fields requiring accurate and reliable positioning and attitude determination; ranging from 'kinematic geodesy', to mobile mapping and imaging, to precise navigation. However, such integrated system may not fulfil the demanding performance requirements when the baseline length between reference and mobil user GPS receiver is grater than a few tens of kilometers. This is because their positioning/attitude determination is still very dependent on the errors of the GPS observations, so-called "baseline dependent errors". This limitation can be remedied by the integration of GPS and INS sensors, using multiple reference stations. Hence, in order to derive the GPS distance dependent errors, this research proposes measurement processing algorithms for multiple reference stations, such as a reference station ambiguity resolution procedure using linear combination techniques, a error estimation based on Kalman filter and a error interpolation. In addition, all the algorithms are evaluated by processing real observations and results are summarized in this paper.

The Camera Calibration Parameters Estimation using The Projection Variations of Line Widths (선폭들의 투영변화율을 이용한 카메라 교정 파라메터 추정)

  • Jeong, Jun-Ik;Moon, Sung-Young;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2372-2374
    • /
    • 2003
  • With 3-D vision measuring, camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. The first establishes reference points in space, and the second uses a grid type frame and statistical method. But, the former has difficulty to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. It can easily estimate camera calibration parameters such as focal length, scale factor, pose, orientations, and distance. But, radial lens distortion is not modeled. The advantage of this algorithm is that it can estimate the distance of the object. Also, the proposed camera calibration method is possible estimate distance in dynamic environment such as autonomous navigation. To validate proposed method, we set up the experiments with a frame on rotator at a distance of 1,2,3,4[m] from camera and rotate the frame from -60 to 60 degrees. Both computer simulation and real data have been used to test the proposed method and very good results have been obtained. We have investigated the distance error affected by scale factor or different line widths and experimentally found an average scale factor that includes the least distance error with each image. It advances camera calibration one more step from static environments to real world such as autonomous land vehicle use.

  • PDF

A GNSS Signal Correlation Using Map-based Partial-time Common Intermediate Frequency Removal Method (맵 기반의 부분시간 공통 중간주파수 제거방식을 이용한 GNSS 신호의 상관 기법)

  • Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.695-701
    • /
    • 2008
  • In this paper, we propose the efficient Doppler removal method using map-based partial-time common intermediate frequency removal technique. In the proposed algorithm, the 2-stage carrier removal process was used. First, the component of common intermediate frequency is removed. Next the component of Doppler was removed with averaging and approximation. For the evaluation of the proposed algorithm, The real-time software GPS L1 C/A-code receiver was implemented. When the proposed algorithms are used, 12 tracking channels with 3 track arm(early, prompt, late) is operated real-time on PC using a Intel Pentium-III 1.0GHz CPU. Also, the requirement of memory was less than 2Mbytes. The real-time software GNSS receiver using the proposed algorithms provides the navigation solution with below 10 meter rms error. Especially, in spited of using the various approximations for implementing the algorithms, the high sensitivity capability (able to track the weak signal with -159dBm) was achieved.

Study on Bandwidth and Characteristic Impedance of CWP3DCS (Coplanar Waveguide Employing Periodic 3D Coupling Structures) for the Development of a Radio Communication FISoC (Fully-integrated System on Chip) Semiconductor Device (완전집적형 무선통신 SoC 반도체 소자 개발을 위한 주기적인 3차원 결합구조를 가지는 코프레너 선로에 대한 대역폭 및 임피던스 특성연구)

  • Yun, Young
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.179-190
    • /
    • 2022
  • In this study, we investigated the characteristic impedance and bandwidth of CPW3DCS (coplanar waveguide employing periodic 3D coupling structures), and examined its potential for the development of a marine radio communication FISoC (fully-integrated system on chip) semiconductor device. To extract bandwidth and characteristic impedance of the CPW3DC, we induced a measurement-based equation reflecting measured insertion loss, and compared the measured results of the propagation constant β and characteristic impedance with the measured ones. According to the results of the comparison, the calculated results show a good agreement with the measured ones. Concretely, the propagation constant β and characteristic impedance exhibited an maximum error of 3.9% and 6.4%, respectively. According to the results of this study, in a range of LT = 30 ~ 150 ㎛ for the length of periodic structures, the CPW3DC exhibited a passband characteristic of 121 GHz, and a very small dependency of characteristic impedance on frequency. We could realize a low impedance transmission line with a characteristic impedance lower than 20 Ω by using CPW3DCS with a line width of 20 ㎛, which was highly reduced, compared with a 3mm line width of conventional transmission line with the same impedance. The characteristic impedance was easily adjusted by changing LT. The above results indicate that the CPW3DC can be usefully used for the development of a wireless communication FISoC (fully-integrated system on chip) semiconductor device. This is the first report of a study on the bandwidth of the CPW3DC.

Confidence Map based Multi-view Image Generation Method from Stereoscopic Images (양안식 영상을 이용한 신뢰도 기반의 다시점 영상 생성 방법)

  • Kim, Do Young;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.27-33
    • /
    • 2013
  • Multi-view video system provides both realistic 3D feelings and free-view navigation. But it is hard to transmit too huge data, so we send only two or three view images and generate intermediate view image using depth information. In this paper, we propose high quality multi-view image generation method from stereoscopic images. Since the stereo matching method does not provide accurate disparity values for all the pixels, especially at the occlusion area, we propose an occlusion handling method using the background pixels at first. We also apply a joint bilateral filtering to enhance the disparity map at the object boundary since it can affect the quality of synthesized images significantly. Finally, we can generate virtual view images at intermediate view positions using confidence map to reduce bad pixel and hole's error. Experimental results show the proposed method performs better than the conventional method.

  • PDF

Robust Pelvic Coordinate System Determination for Pose Changes in Multidetector-row Computed Tomography Images

  • Kobashi, Syoji;Fujimoto, Satoshi;Nishiyama, Takayuki;Kanzaki, Noriyuki;Fujishiro, Takaaki;Shibanuma, Nao;Kuramoto, Kei;Kurosaka, Masahiro;Hata, Yutaka
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • For developing navigation system of total hip arthroplasty (THA) and evaluating hip joint kinematics, 3-D pose position of the femur and acetabulum in the pelvic coordinate system has been quantified. The pelvic coordinate system is determined by manually indicating pelvic landmarks in multidetector-row computed tomography (MDCT) images. It includes intra- and inter-observer variability, and may result in a variability of THA operation or diagnosis. To reduce the variability of pelvic coordinate system determination, this paper proposes an automated method in MDCT images. The proposed method determines pelvic coordinate system automatically by detecting pelvic landmarks on anterior pelvic plane (APP) from MDCT images. The method calibrates pelvic pose by using silhouette images to suppress the affect of pelvic pose change. As a result of comparing with manual determination, the proposed method determined the coordinate system with a mean displacement of $2.6\;{\pm}\;1.6$ mm and a mean angle error of $0.78\;{\pm}\;0.34$ deg on 5 THA subjects. For changes of pelvic pose position within 10 deg, standard deviation of displacement was 3.7 mm, and of pose was 1.28 deg. We confirmed the proposed method was robust for pelvic pose changes.

2-D/3-D Seismic Data Acquisition and Quality Control for Gas Hydrate Exploration in the Ulleung Basin (울릉분지 가스하이드레이트 2/3차원 탄성파 탐사자료 취득 및 품질관리)

  • Koo, Nam-Hyung;Kim, Won-Sik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun;Yoo, Dong-Geun;Lee, Ho-Young;Park, Keun-Pil
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • To identify the potential area of gas hydrate in the Ulleung Basin, 2-D and 3-D seismic surveys using R/V Tamhae II were conducted in 2005 and 2006. Seismic survey equipment consisted of navigation system, recording system, streamer cable and air-gun source. For reliable velocity analysis in a deep sea area where water depths are mostly greater than 1,000 m and the target depth is up to about 500 msec interval below the seafloor, 3-km-long streamer and 1,035 $in^3$ tuned air-gun array were used. During the survey, a suite of quality control operations including source signature analysis, 2-D brute stack, RMS noise analysis and FK analysis were performed. The source signature was calculated to verify its conformity to quality specification and the gun dropout test was carried out to examine signature changes due to a single air gun's failure. From the online quality analysis, we could conclude that the overall data quality was very good even though some seismic data were affected by swell noise, parity error, spike noise and current rip noise. Especially, by checking the result of data quality enhancement using FK filtering and missing trace restoration technique for the 3-D seismic data inevitably contaminated with current rip noises, the acquired data were accepted and the field survey could be conducted continuously. Even in survey areas where the acquired data would be unsuitable for quality specification, the marine seismic survey efficiency could be improved by showing the possibility of noise suppression through onboard data processing.

An Experimental Study on Assessing Precision and Accuracy of Low-cost UAV-based Photogrammetry (저가형 UAV 사진측량의 정밀도 및 정확도 분석 실험에 관한 연구)

  • Yun, Seonghyeon;Lee, Hungkyu;Choi, Woonggyu;Jeong, Woochul;Jo, Eonjeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.207-215
    • /
    • 2022
  • This research has been focused on accessing precision and accuracy of UAV (Unmanned Aerial Vehicle)-derived 3-D surveying coordinates. To this end, a highly precise and accurate testing control network had been established by GNSS (Global Navigation Satellite Systems) campaign and its network adjustment. The coordinates of the ground control points and the check points were estimated within 1cm accuracy for 95% of the confidence level. FC330 camera mounted on DJI Phantom 4 repeatedly took aerial photos of an experimental area seven times, and then processed them by two widely used software packages. To evaluate the precision and accuracy of the aerial surveys, 3-D coordinates of the ten check points which automatically extracted by software were compared with GNSS solutions. For the 95% confidence level, the standard deviation of two software's result is within 1cm, 2cm, and 4cm for the north-south, east-west, and height direction, and RMSE (Root Mean Square Error) is within 9cm and 8cm for the horizontal, vertical component, respectively. The interest is that the standard deviation is much smaller than RMSE. The F-ratio test was performed to confirm the statistical difference between the two software processing results. For the standard deviation and RMSE of most positional components, exception of RMSE of the height, the null hypothesis of the one-tailed tests was rejected. It indicates that the result of UAV photogrammetry can be different statistically based on the processing software.

A Study on UAV DoA Estimation Accuracy Improvement using Monopulse Tracking (모노펄스 추적을 이용한 무인기 DoA 추정정밀도 향상 방안에 관한 연구)

  • Son, Eutum-Hyotae;Yoon, Chang-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1121-1126
    • /
    • 2017
  • Various studies such as INS(: Inertial Navigation System) are conducting to estimate the position of UAV, because the GPS information of UAV is at risk like the GPS jamming. The position estimation using DoA and RTT are used to apply many radar systems, and that process can be applied in datalink of UAV. The general monopulse feed in UAV datalink is Multi-horn, because of the wide BW(: Band Width) and frequency range. And it needs wide SNR range of tracking because of the limited transmit power of airborne unit. The estimation error of position increase at low SNR, and the DoA is valid in only 3dB beam width but high SNR causes false of mainlobe detection because of large sidelobe. In this paper, We propose the method to achieve higher accuracy of DoA estimation on low SNR and review some idea that able to detect mainlobe.